1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2008 Sandia National Laboratories. Developed at the
University of Wisconsin--Madison under SNL contract number
624796. The U.S. Government and the University of Wisconsin
retain certain rights to this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2008) [email protected]
***************************************************************** */
/** \file CLArgs.hpp
* \brief
* \author Jason Kraftcheck
*/
#ifndef MSQ_CLARGS_HPP
#define MSQ_CLARGS_HPP
class CLArgImpl;
#include "Mesquite.hpp"
#include <iosfwd>
#include <vector>
#include <string>
#include <sstream>
#include <iterator>
/**\brief Parse command-line arguments
*
* This class provides a mechanism for parsing and to some extend validating
* command-line arguments. Use of this class can be divided into three steps:
*
* 1) Call *_flag and arg methods to define acceptable command line arguments
*
* 2) Call parse_options to parse the command line arguments according to
* acceptable flags defined in step 1.
*
* 3) Check the values in registerd callback class instances.
*
* The '-h' flag is reserved for reqesting a description of the allowable
* arguments (help). If it is encountered inside parse_options, the help
* will be printed and the program will be terminated w/out returning from
* parse_options.
*
* The '-M' flag is similar to '-h', except that the help is written
* in UNIX 'man page' format.
*/
class CLArgs
{
public:
/**\brief Base class for callback interface (type-independent functions) */
class ArgIBase
{
private:
bool wasSeen; //!< Keep track of whether or not this flag was encountered
public:
ArgIBase() : wasSeen( false ) {} //!< constructor
virtual ~ArgIBase() {} //!< virtual destructor for proper cleanup
/**\brief Get short description string for usage output or empty string for default*/
virtual std::string brief() const
{
return std::string();
}
/**\brief Get short description string for UNIX man page output or empty string for default
*/
virtual std::string manstr() const
{
return std::string();
}
/**\brief Get optional additional info to print with flag description */
virtual std::string desc_append() const
{
return std::string();
}
/**\brief Get optional string containing default value for option if not specified by user
*/
virtual std::string default_str() const
{
return std::string();
}
/**\brief Mark this flag as having been specified by the user */
void set_seen()
{
wasSeen = true;
}
/**\brief Test if the user specified this flag */
bool seen() const
{
return wasSeen;
}
};
/**\brief Interface for type-specific callback classes */
template < typename T >
class ArgTemplateI : public ArgIBase
{
public:
virtual bool value( const T& val ) = 0;
};
/**\brief Trivial implementation for type-specific classes */
template < typename T >
class ArgTemplate : public ArgTemplateI< T >
{
private:
T mValue; //!< The default or user-specified value for an option.
bool haveDefault; //!< True if app. provided default value.
public:
virtual ~ArgTemplate() {}
virtual bool value( const T& val ) //!< Set value<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
{
mValue = val;
ArgTemplateI< T >::set_seen();
return true;
}
const T& value() const
{
return mValue;
} //!< get value
/**\brief Initialize with default value */
ArgTemplate( const T& initial_value ) : mValue( initial_value ), haveDefault( true ) {}<--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < std :: string >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgTemplate < bool >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
/**\brief Initialize without default value */
ArgTemplate() : mValue( T() ), haveDefault( false ) {}
/**\brief Get string representation of default value, or empty string of no default value */
virtual std::string default_str() const
{
std::ostringstream ss;
if( haveDefault ) ss << mValue;
return ss.str();
}
};
/**\brief Trivial implementation for type-specific classes */
template < typename T >
class ArgListTemplate : public ArgTemplateI< std::vector< T > >
{
private:
std::vector< T > mValue; //!< The default or user-specified value for an option.
bool haveDefault; //!< True if app. provided default value.
public:
virtual ~ArgListTemplate() {}
virtual bool value( const std::vector< T >& val ) //!< Set value<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
{
mValue = val;
ArgTemplateI< std::vector< T > >::set_seen();
return true;
}
const std::vector< T >& value() const
{
return mValue;
} //!< get value
/**\brief Initialize with default value */
ArgListTemplate( const std::vector< T >& initial_value ) : mValue( initial_value ), haveDefault( true ) {}<--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < int >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. [+]Class 'ArgListTemplate < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
/**\brief Initialize without default value */
ArgListTemplate() : haveDefault( false ) {}
/**\brief Get string representation of default value, or empty string of no default value */
virtual std::string default_str() const
{
std::ostringstream ss;
std::copy( mValue.begin(), mValue.end(), std::ostream_iterator< T >( ss, ", " ) );
return ss.str();
}
};
/**\brief Callback API for a string argument */
typedef ArgTemplateI< std::string > StringArgI;
/**\brief Callback API for an integer argument */
typedef ArgTemplateI< int > IntArgI;
/**\brief Callback API for a long integer argument */
typedef ArgTemplateI< long > LongArgI;
/**\brief Callback API for a double-precision floating-point argument */
typedef ArgTemplateI< double > DoubleArgI;
/**\brief Callback API for a Boolean or toggle argument */
typedef ArgTemplateI< bool > ToggleArgI;
/**\brief Callback API for an integer list argument */
typedef ArgTemplateI< std::vector< int > > IntListArgI;
/**\brief Callback API for a double list argument */
typedef ArgTemplateI< std::vector< double > > DoubleListArgI;
/**\brief Trivial callback implementation for a string argument */
typedef ArgTemplate< std::string > StringArg;
/**\brief Trivial callback implementation for an integer argument */
typedef ArgTemplate< int > IntArg;
/**\brief Trivial callback implementation for a long integer argument */
typedef ArgTemplate< long > LongArg;
/**\brief Trivial callback implementation for a ouble-precision floating-point argument */
typedef ArgTemplate< double > DoubleArg;
/**\brief Trivial callback implementation for a Boolean or toggle argument */
typedef ArgTemplate< bool > ToggleArg;
/**\brief Trivial callback implementation for an integer list argument */
typedef ArgListTemplate< int > IntListArg;
/**\brief Trivial callback implementation for a double list argument */
typedef ArgListTemplate< double > DoubleListArg;
/**\brief String arugment that is limited to a list of acceptable keywords
*
* A specialized string arugment implementation that limits the
* acceptable string argument to one of a list of keywords.
* A case-insensitive comparison is done with the allowed keywords.
* The "value" has the case of the keyword rather than the case
* used in the literal value specified in the command line argument.
*/
class KeyWordArg : public StringArg
{
private:
std::vector< std::string > mKeyWords;
void initialize( const char* keyword_list[], int list_length );
public:
KeyWordArg( const char* keyword_list[], int list_length )
{
initialize( keyword_list, list_length );
}
KeyWordArg( const char* default_val, const char* keyword_list[], int list_length ) : StringArg( default_val )
{
initialize( keyword_list, list_length );
}
virtual bool value( const std::string& val );<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class
virtual std::string brief() const;
virtual std::string manstr() const;
static bool compare_no_case( const char* s1, const char* s2 );
};
class IntRange
{
private:
int mMin, mMax;
public:
IntRange( const int* min, const int* max );
bool is_valid( int val ) const;
std::string desc_append() const;
};
/**\brief Integer argument constrained to a range of valid values. */
class IntRangeArg : public IntArg
{
private:
IntRange mRange;
public:
IntRangeArg( const int* min = 0, const int* max = 0 ) : mRange( min, max ) {}
IntRangeArg( int default_val, const int* min, const int* max ) : IntArg( default_val ), mRange( min, max ) {}
bool value( const int& val );<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class
const int& value() const
{
return IntArg::value();
}
std::string desc_append() const
{
return mRange.desc_append();
}
};
/**\brief Integer list argument constrained to a range of valid values. */
class IntListRangeArg : public IntListArg
{
private:
IntRange mRange;
public:
IntListRangeArg( const int* min = 0, const int* max = 0 ) : mRange( min, max ) {}
bool value( const std::vector< int >& val );<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class
const std::vector< int >& value() const
{
return IntListArg::value();
}
std::string desc_append() const
{
return mRange.desc_append();
}
};
class DoubleRange
{
private:
bool haveMin, haveMax, mInclusive;
double mMin, mMax;
public:
DoubleRange( const double* min, const double* max, bool inclusive );
bool is_valid( double value ) const;
std::string desc_append() const;
};
/**\brief Double argument constrained to a range of valid values. */
class DoubleRangeArg : public DoubleArg
{
private:
DoubleRange mRange;
public:
DoubleRangeArg( const double* min = 0, const double* max = 0, bool inclusive = true )
: mRange( min, max, inclusive )
{
}
DoubleRangeArg( double default_val, const double* min = 0, const double* max = 0, bool inclusive = true )<--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. [+]Class 'DoubleRangeArg' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
: DoubleArg( default_val ), mRange( min, max, inclusive )
{
}
bool value( const double& val );<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class
const double& value() const
{
return DoubleArg::value();
}
std::string desc_append() const
{
return mRange.desc_append();
}
};
/**\brief Double list argument constrained to a range of valid values. */
class DoubleListRangeArg : public DoubleListArg
{
private:
DoubleRange mRange;
public:
DoubleListRangeArg( const double* min = 0, const double* max = 0, bool inclusive = true )
: mRange( min, max, inclusive )
{
}
bool value( const std::vector< double >& val );<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class<--- Function in derived class
const std::vector< double >& value() const
{
return DoubleListArg::value();
}
std::string desc_append() const
{
return mRange.desc_append();
}
};
public:
/**\brief Define basic program
*
*\param progname The program name
*\param brief_desc A brief description of the purpose of the program.
*\param desc Program description for documentation.
*/
CLArgs( const char* progname, const char* brief_desc, const char* desc );
~CLArgs();
/**\brief Check if flag is undefined */
bool is_flag_available( char fl ) const;
/**\brief Register a flag that requires a string argument.
*
* Define a flag of the form "-f <somestring>".
*\param fl The character for the flag.
*\param name The name of the flag argument
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool str_flag( char fl, const char* name, const char* desc, StringArgI* callback );
/**\brief Register a flag that requires an integer argument.
*
* Define a flag of the form "-f <int>".
*\param fl The character for the flag.
*\param name The name of the flag argument
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool int_flag( char fl, const char* name, const char* desc, IntArgI* callback );
/**\brief Register a flag that requires an integer argument.
*
* Define a flag of the form "-f <int>".
*\param fl The character for the flag.
*\param name The name of the flag argument
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool long_flag( char fl, const char* name, const char* desc, LongArgI* callback );
/**\brief Register a flag that requires a real umber argument.
*
* Define a flag of the form "-f <double>".
*\param fl The character for the flag.
*\param name The name of the flag argument
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\param inclusive If true, accept 'min' or 'max': [min,max]. If
* false, reject 'min' and 'max' values: (min,max).
*\return false if flag is already in use, true otherwise.
*/
bool double_flag( char fl, const char* name, const char* desc, DoubleArgI* callback );
/**\brief Register a pair of flags that accept no arguments and have
* opposing affects.
*
* Regstier a flag of the form [-f|-F], where one implies a true
* state and the other a false state (i.e. enable or disable some
* functionality.)
*\param on_flag Flag corresponding to true or 'on' state.
*\param off_flag Flag corresponding to false or 'off' state.
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool toggle_flag( char on_flag, char off_flag, const char* desc, ToggleArgI* callback );
/**\brief Register a flag with no value.
*
* Define a flag such that the state of the option is considered
* to be false unless flag is specified. If the flag is specified,
* the option is considered to be true.
*\param fl The character for the flag.
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool toggle_flag( char fl, const char* desc, ToggleArgI* callback );
/**\brief Register a flag that accepts a list of positive integer arguments.
*
* Define a flag that accepts a list of ranges of positive integer values
* separated by commas. A zero value is rejected. Ranges can be either
* a single value or pair of values separated by a dash. For example:
* "-f 1,4-10,2,20-25".
*
* Use 'get_int_list' to query values of flag.
*
*\param fl The character for the flag.
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool id_list_flag( char fl, const char* desc, IntListArgI* callback );
/**\brief Register a flag that requires a comma-separated
* list of integer values.
*
* Define a flag that has an integer list for its arguments. The
* integers must be specified as a comma-separated list.
*
* Use 'limit_list_flag' to limit the number of values accepted
* in the argument. If 'limit_list_flag' is never called, any
* number of argument values will be accepted.
*
*\param fl The character for the flag.
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool int_list_flag( char fl, const char* desc, IntListArgI* callback );
/**\brief Register a flag that requires a comma-separated
* list of double values.
*
* Define a flag that has an double list for its arguments. The
* values must be specified as a comma-separated list.
*
* Use 'limit_list_flag' to limit the number of values accepted
* in the argument. If 'limit_list_flag' is never called, any
* number of argument values will be accepted.
*
*\param fl The character for the flag.
*\param desc A description of the purpose of the flag and argument.
*\parma callback Object instance to which to pass the parsed argument value.
*\return false if flag is already in use, true otherwise.
*/
bool double_list_flag( char fl, const char* desc, DoubleListArgI* callback );
/**\brief Set a limit on the number of values accepted for a list-type
* flag. May be called multiple times for a flag.
*
* Add a limit on the number of values accepted for a list-type flag.
* This function may be called multiple times if the flag should
* accept a finite set of different arugment value counts.
*
*\param fl The flag
*\param num_values The number of values to accept
*\param value_names An array of 'num_value' strings specifying the
* name of each value.
*\return false if flag is not defined as a list-type flag or this
* method has already been called with the same flag AND
* number of values. True otherwise.
*/
bool limit_list_flag( char fl, int num_values, const char* const* value_names );
/**\brief Specify that an argument without a flag is expected.
*
* Arguments are parsed in the order they are added, with the
* exception that all optional args are parsed after all required
* args.
* \param name 'name' of argument to display in help (e.g. "output_file");
*/
void add_required_arg( const char* name );
void add_optional_arg( const char* name );
/**\brief Parse argument list.
*
*\param argc The argument list length passed to the main() routine.
* The first value is assumed to be the executable name.
* This this value must be at least 1.
*\param argv The argument list as passed to main().
*\param args_out The list of non-flag arguments encountered, as
* defined by the 'args' method. If the 'args' method
* has not been called, no non-flag arguments are accepted
* and this list will be empty.
*\param error_stream stream to which to write error messages.
*\return true if all arguments were accepted. false otherwise.
*/
bool parse_options( int argc, char* argv[], std::vector< std::string >& args_out, std::ostream& error_stream );
/**\brief Write help
*
* Write help text to passed stream.
*/
void print_help( std::ostream& stream ) const;
/**\brief Write UNIX man page
*
* Write man page to passed stream.
*/
void print_man_page( std::ostream& stream ) const;
/**\brief prinint usage (brief help)
*/
void print_usage( std::ostream& stream ) const;
private:
CLArgImpl* impl;
};
template < typename T >
std::ostream& operator<<( std::ostream& str, const std::vector< T >& list )
{
typename std::vector< T >::const_iterator i = list.begin();
if( i != list.end() )
{
str << *i;
for( ++i; i != list.end(); ++i )
str << ',' << *i;
}
return str;
}
#endif
|