1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667 | /** \file ScdInterface.hpp
*/
#ifndef SCD_INTERFACE
#define SCD_INTERFACE
#include "moab/Interface.hpp"
#include "moab/HomXform.hpp"
#include <iostream>
#include <vector>
#include <cassert>
#include "moab/win32_config.h"
namespace moab
{
class StructuredElementSeq;
class EntitySequence;
class ScdVertexData;
class EntitySequence;
class ScdBox;
class ParallelComm;
/** \class ScdInterface ScdInterface.hpp "moab/ScdInterface.hpp"
* \brief A structured mesh interface for MOAB-based data
*
* Structured mesh in MOAB is created and accessed through the ScdInterface and ScdBox classes.
*
* \section Construction Construction and Representation
* Structured mesh can be constructed in one of two ways. First, a rectangular block of mesh,
* both vertices and edges/quads/hexes, can be created in one shot, using the construct_box method.
* In this case, there are single sequences of vertices/entities. The second method for creating
* structured mesh is to create the structured blocks of vertices and elements separately. In
* this case, different blocks of elements can share blocks of vertices, and each block of
* elements has its own independent parametric space. The algorithms behind this representation
* are described in T. Tautges, "MOAB-SD: Integrated structured and unstructured mesh
* representation", Eng. w Comp, vol 20 no. 3.
*
* Structured mesh is represented in MOAB down at the element sequence level, which is something
* applications don't see. In addition, when structured mesh is created, entity sets are also
* created and tagged with information about the parametric space. In particular, the BOX_DIMS
* tag is used to indicate the lower and upper corners in parametric space (this
* tag is integer size 6). Structured mesh blocks are also available through ScdBox class objects
* returned by ScdInterface. These class objects should be treated only as references to the
* structured mesh blocks; that is, the structured mesh referenced by these objects is not deleted
* when the ScdBox instance is destroyed. Functions for destroying the actual mesh are available
* on this class, though.
*
* Structured mesh blocks are returned in the form of ScdBox class objects. Each ScdBox instance
* represents a rectangular block of vertices and possibly elements (edges, quads, or hexes). The
* edge/quad/hex entity handles for a ScdBox are guaranteed to be contiguous, starting at a starting
* value which is also available through the ScdBox class. However, vertex handles may or may not
* be contiguous, depending on the construction method. The start vertex handle is also available
* from the ScdBox class.
*
* \section Parameters Parametric Space
*
* Each structured box has a parametric (ijk) space, which can be queried through the ScdBox
* interface. For non-periodic boxes, the edge/quad/hex parameter bounds are one less in each
* dimension than that of the vertices, otherwise they are the same as the vertex parameter bounds.
* In a parallel representation, boxes are locally non-periodic by default, but global ids are
* assigned such that the last set of vertices in a periodic direction match those of the first set
* of vertices in that direction.
*
* Entity handles are allocated with the i parameter varying fastest, then j, then k.
*
* \section Per Periodic Meshes
* Boxes can be periodic in i, or j, or both i and j. If only i or j is periodic, the corresponding
* mesh is a strip or an annular cylinder; if both i and j are periodic, the corresponding mesh is
* an annular torus. A box cannot be periodic in all three parameters. If i and/or j is periodic,
* and assuming IMIN/JMIN is zero, the parameter extents in the/each periodic direction (IMAX/JMAX)
* for vertices and edges/faces/hexes are the same, and the vertices on the "top" end in the
* periodic direction are at parameter value IMIN/JMIN.
*
* \section Par Parallel Representation
*
* For parallel structured meshes, each local mesh (the mesh on a given process) looks like a
* non-periodic structured mesh, and there are both local and global parameters of the structured
* mesh. If the mesh is periodic in a given direction, the last process in the periodic direction
* has local IMAX/JMAX that is one greater than the global IMAX/JMAX.
*
*
* In parallel, the periodicity described in the previous paragraph is "local periodicity"; there is
* also the notion of global periodicity. For serial meshes, those concepts are the same. In
* parallel, a mesh can be locally non-periodic but globally periodic in a given direction. In that
* case, the local mesh is still non-periodic, i.e. the parametric extents for edges is one fewer
* than that of vertices in that direction. However, vertices are given global ids such that they
* match those of the parametric minimum in that direction. Geometric positions of the vertices at
* the high end should still be greater than the ones just below.
*
* \section Adjs Adjacent Entities
* This interface supports parametric access to intermediate-dimension entities, e.g. adjacent faces
* and edges in a 3d mesh. In this case, a direction parameter is added, to identify the parametric
* direction of the entities being requested. For example, to retrieve the faces adjacent to a hex
* with parameters ijk, in the i parametric direction, you would use the parameters ijk0. These
* intermediate entities are not stored in a structured representation, but their parametric
* positions can be evaluated based on their adjacencies to higher-dimensional entities. Thanks to
* Milad Fatenejad for the thinking behind this.
*
* \section Evaluation Evaluation
* The ScdBox class provides functions for evaluating the mesh based on the ijk parameter space.
* These functions are inlined where possible, for efficiency.
*/
//! struct for keeping parallel data in one place
class ScdParData
{
public:
ScdParData() : partMethod( NOPART ), pComm( NULL )
{
gDims[0] = gDims[1] = gDims[2] = gDims[3] = gDims[4] = gDims[5] = 0;
gPeriodic[0] = gPeriodic[1] = gPeriodic[2] = 0;
pDims[0] = pDims[1] = pDims[2] = 0;
}
//! Partition method enumeration; these strategies are described in comments for
//! compute_partition_alljorkori, compute_partition_alljkbal, compute_partition_sqij,
//! compute_partition_sqjk, and compute_partition_sqijk
enum PartitionMethod
{
ALLJORKORI = 0,
ALLJKBAL,
SQIJ,
SQJK,
SQIJK,
TRIVIAL,
RCBZOLTAN,
NOPART
};
//! Partition method names
static MOAB_EXPORT const char* PartitionMethodNames[NOPART + 1];
//! partition method used to partition global parametric space
int partMethod;
//! lower and upper corners of global box
int gDims[6];
//! is globally periodic in i or j or k
int gPeriodic[3];
//! number of procs in each direction
int pDims[3];
//! parallel communicator object for this par scd mesh
ParallelComm* pComm;
};
class MOAB_EXPORT ScdInterface
{
public:
friend class ScdBox;
//! Constructor
/** Constructor; if find_boxes is true, this will search for entity sets marked as
* structured blocks, based on the BOX_DIMS tag. Structured mesh blocks will be stored
* in this interface class for future retrieval. Structured mesh blocks created through
* this interface will also be stored here.
* \param impl MOAB instance
* \param find_boxes If true, search all the entity sets, caching the structured mesh blocks
*/
ScdInterface( Interface* impl, bool find_boxes = false );<--- Class 'ScdInterface' has a constructor with 1 argument that is not explicit. [+]Class 'ScdInterface' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ScdInterface' has a constructor with 1 argument that is not explicit. [+]Class 'ScdInterface' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ScdInterface' has a constructor with 1 argument that is not explicit. [+]Class 'ScdInterface' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ScdInterface' has a constructor with 1 argument that is not explicit. [+]Class 'ScdInterface' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'ScdInterface' has a constructor with 1 argument that is not explicit. [+]Class 'ScdInterface' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
// Destructor
~ScdInterface();
//! Return the MOAB Interface instance *
Interface* impl() const;
//! Construct new structured mesh box, including both vertices and elements
/** Parameter range
* for vertex box is [low-high], for elements is [low-high). Construct quads by passing
* in low[2] == high[2], and edges by passing in low[1] == high[1] and low[2] == high[2].
* The result is passed back in a ScdBox*, which is a *reference* to the box of structured mesh.
* That is, the actual mesh is retained in MOAB when the ScdBox is destroyed. To actually
* destroy the mesh, call the destroy_mesh function on the ScdBox object first, before
* destroying it. \param low Lower corner in parameter space \param high Higher corner in
* parameter space \param coords Coordinates of vertices, interleaved (xyzxyz...); if NULL,
* coords are set to parametric values \param num_coords Number of coordinate values \param
* new_box Reference to box of structured mesh \param lperiodic[3] If lperiodic[s] != 0,
* direction s is locally periodic \param par_data If non-NULL, this will get stored on the
* ScdBox once created, contains info about global parallel nature of ScdBox across procs \param
* assign_global_ids If true, assigns 1-based global ids to vertices using GLOBAL_ID_TAG_NAME
* \param resolve_shared_ents If != -1, resolves shared entities up to and including dimension
* equal to value
*/
ErrorCode construct_box( HomCoord low,
HomCoord high,
const double* const coords,
unsigned int num_coords,
ScdBox*& new_box,
int* const lperiodic = NULL,
ScdParData* const par_data = NULL,
bool assign_global_ids = false,
int resolve_shared_ents = -1 );
//! Create a structured sequence of vertices, quads, or hexes
/** Starting handle for the sequence is available from the returned ScdBox.
* If creating a structured quad or hex box, subsequent calls must be made to ScdBox::add_vbox,
* until all the vertices have been filled in for the box.
* \param low Lower corner of structured box
* \param high Higher corner of structured box
* \param type EntityType, one of MBVERTEX, MBEDGE, MBQUAD, MBHEX
* \param starting_id Requested start id of entities
* \param new_box Reference to the newly created box of entities
* \param is_periodic[3] If is_periodic[s] is non-zero, mesh should be periodic in direction s
* (s=[0,1,2])
*/
ErrorCode create_scd_sequence( const HomCoord& low,
const HomCoord& high,
EntityType type,
int starting_id,
ScdBox*& new_box,
int* is_periodic = NULL );
//! Return all the structured mesh blocks in this MOAB instance, as ScdBox objects
/** Return the structured blocks in this MOAB instance. If these were not searched for
* at instantiation time, then the search is done now.
* \param boxes Vector of ScdBox objects representing structured mesh blocks
*/
ErrorCode find_boxes( std::vector< ScdBox* >& boxes );
//! Return all the structured mesh blocks in this MOAB instance, as entity set handles
/** Return the structured blocks in this MOAB instance. If these were not searched for
* at instantiation time, then the search is done now.
* \param boxes Range of entity set objects representing structured mesh blocks
*/
ErrorCode find_boxes( Range& boxes );
//! Return all the structured mesh blocks known by ScdInterface (does not search)
/** Return the structured blocks in this ScdInterface instance. Does not search for new boxes,
* just returns the contents of the list.
* \param boxes Structured boxes
*/
ErrorCode get_boxes( std::vector< ScdBox* >& boxes );
//! Return the tag marking the lower and upper corners of boxes
/**
* \param create_if_missing If the tag does not yet exist, create it
*/
Tag box_dims_tag( bool create_if_missing = true );
//! Return the tag marking the global lower and upper corners of boxes
/**
* \param create_if_missing If the tag does not yet exist, create it
*/
Tag global_box_dims_tag( bool create_if_missing = true );
//! Return the tag marking the partitioning method used to partition the box in parallel
/**
* \param create_if_missing If the tag does not yet exist, create it
*/
Tag part_method_tag( bool create_if_missing = true );
//! Return the tag marking whether box is periodic in i and j
/**
* \param create_if_missing If the tag does not yet exist, create it
*/
Tag box_periodic_tag( bool create_if_missing = true );
//! Return the tag marking the ScdBox for a set
/**
* \param create_if_missing If the tag does not yet exist, create it
*/
Tag box_set_tag( bool create_if_missing = true );
//! Return the ScdBox corresponding to the entity set passed in
/** If the entity isn't a structured box set, NULL is returned.
* \param eh Entity whose box is being queried
*/
ScdBox* get_scd_box( EntityHandle eh );
//! Compute a partition of structured parameter space
/** Compute a partition of structured parameter space, based on data in the ScdParData
* passed in. Results are passed back in arguments, which application can set back into
* par_data argument if they so desire.
* \param np Number of processors
* \param nr Rank of this processor
* \param par_data ScdParData object that contains input global parameter space, desired
* partitioning method, and information about global periodicity.
* \param ldims Local parameters for grid
* \param lperiodic Whether or not a given dimension is locally periodic
* \param pdims Number of procs in i, j, k directions
*/
static ErrorCode compute_partition( int np,
int nr,
const ScdParData& par_data,
int* ldims,
int* lperiodic = NULL,
int* pdims = NULL );
//! Get information about the neighbor in the dijk[] direction, where dijk can be -1 or 1 for
//! all 3 params
/** Get information about the neighbor in the dijk[] direction, where dijk can be -1 or 1 for
* all 3 params \param np (in) Total # procs \param nr Processor from which neighbor is
* requested \param spd (in) ScdParData containing part method, gdims, gperiodic data \param
* dijk(*) (in) Direction being queried, = +/-1 or 0 \param pto (out) Processor holding the
* destination part \param rdims(6) (out) Parametric min/max of destination part \param
* facedims(6) (out) Parametric min/max of interface between pfrom and pto; if at the max in a
* periodic direction, set to global min of that direction \param across_bdy(3) (out) If
* across_bdy[i] is -1(1), interface with pto is across periodic lower(upper) bdy in parameter
* i, 0 otherwise
*/
static ErrorCode get_neighbor( int np,
int nr,
const ScdParData& spd,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
//! Tag vertices with sharing data for parallel representations
/** Given the ParallelComm object to use, tag the vertices shared with other processors
*/
ErrorCode tag_shared_vertices( ParallelComm* pcomm, EntityHandle seth );
//! Tag vertices with sharing data for parallel representations
/** Given the ParallelComm object to use, tag the vertices shared with other processors
*/
ErrorCode tag_shared_vertices( ParallelComm* pcomm, ScdBox* box );
protected:
//! Remove the box from the list on ScdInterface
ErrorCode remove_box( ScdBox* box );
//! Add the box to the list on ScdInterface
ErrorCode add_box( ScdBox* box );
private:
//! Create an entity set for a box, and tag with the parameters
/** \param low Lower corner parameters for this box
* \param high Upper corner parameters for this box
* \param scd_set Entity set created
* \param is_periodic[3] If is_periodic[s] is non-zero, mesh should be periodic in direction s
* (s=[0,1,2])
*/
ErrorCode create_box_set( const HomCoord& low,
const HomCoord& high,
EntityHandle& scd_set,
int* is_periodic = NULL );
//! Compute a partition of structured parameter space
/** Partitions the structured parametric space by partitioning j, k, or i only.
* If j is greater than #procs, partition that, else k, else i.
* For description of arguments, see ScdInterface::compute_partition.
*/
inline static ErrorCode compute_partition_alljorkori( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* lijk,
int* lperiodic,
int* pijk );
//! Compute a partition of structured parameter space
/** Partitions the structured parametric space by partitioning j, and possibly k,
* seeking square regions of jk space
* For description of arguments, see ScdInterface::compute_partition.
*/
inline static ErrorCode compute_partition_alljkbal( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* lijk,
int* lperiodic,
int* pijk );
//! Compute a partition of structured parameter space
/** Partitions the structured parametric space by seeking square ij partitions
* For description of arguments, see ScdInterface::compute_partition.
*/
inline static ErrorCode compute_partition_sqij( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* lijk,
int* lperiodic,
int* pijk );
//! Compute a partition of structured parameter space
/** Partitions the structured parametric space by seeking square jk partitions
* For description of arguments, see ScdInterface::compute_partition.
*/
inline static ErrorCode compute_partition_sqjk( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* lijk,
int* lperiodic,
int* pijk );
//! Compute a partition of structured parameter space
/** Partitions the structured parametric space by seeking square ijk partitions
* For description of arguments, see ScdInterface::compute_partition.
*/
inline static ErrorCode compute_partition_sqijk( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* lijk,
int* lperiodic,
int* pijk );
//! Get vertices shared with other processors
/** Shared vertices returned as indices into each proc's handle space
* \param box Box used to get parametric space info
* \param procs Procs this proc shares vertices with
* \param offsets Offsets into indices list for each proc
* \param shared_indices local/remote indices of shared vertices
*/
static ErrorCode get_shared_vertices( ParallelComm* pcomm,
ScdBox* box,
std::vector< int >& procs,
std::vector< int >& offsets,
std::vector< int >& shared_indices );
static ErrorCode get_indices( const int* const ldims,
const int* const rdims,
const int* const across_bdy,
int* face_dims,
std::vector< int >& shared_indices );
static ErrorCode get_neighbor_alljorkori( int np,
int pfrom,
const int* const gdims,
const int* const gperiodic,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
static ErrorCode get_neighbor_alljkbal( int np,
int pfrom,
const int* const gdims,
const int* const gperiodic,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
static ErrorCode get_neighbor_sqij( int np,
int pfrom,
const int* const gdims,
const int* const gperiodic,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
static ErrorCode get_neighbor_sqjk( int np,
int pfrom,
const int* const gdims,
const int* const gperiodic,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
static ErrorCode get_neighbor_sqijk( int np,
int pfrom,
const int* const gdims,
const int* const gperiodic,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy );
static int gtol( const int* gijk, int i, int j, int k );
//! assign global ids to vertices in this box
ErrorCode assign_global_ids( ScdBox* box );
//! interface instance
Interface* mbImpl;
//! whether we've searched the database for boxes yet
bool searchedBoxes;
//! structured mesh blocks; stored as ScdBox objects, can get sets from those
std::vector< ScdBox* > scdBoxes;
//! tag representing whether box is periodic in i and j
Tag boxPeriodicTag;
//! tag representing box lower and upper corners
Tag boxDimsTag;
//! tag representing global lower and upper corners
Tag globalBoxDimsTag;
//! tag representing partition method
Tag partMethodTag;
//! tag pointing from set to ScdBox
Tag boxSetTag;
};
class MOAB_EXPORT ScdBox
{
friend class ScdInterface;
public:
//! Destructor
~ScdBox();
//! Return the ScdInterface responsible for this box
inline ScdInterface* sc_impl() const;
//! Add a vertex box to this box
/* Add a vertex box to the element sequence referenced by this box. The passed in vbox must
* be a vertex box, with parametric extents no larger than that of this box. This vbox is
* oriented to this box by matching parameters from1-from3 in vbox to to1-to3 in this box.
* If bb_input is true, only the part of the vertex sequence between bb_min and bb_max is
* referenced \param vbox The vertex box being added to this box \param from1 1st reference
* point on vbox \param to1 1st reference point on this box \param from2 2nd reference point on
* vbox \param to2 2nd reference point on this box \param from3 3rd reference point on vbox
* \param to3 3rd reference point on this box
* \param bb_input If true, subsequent parameters list extents of vbox referenced
* \param bb_min Lower corner of rectangle referenced
* \param bb_max Upper corner of rectangle referenced
*/
ErrorCode add_vbox( ScdBox* vbox,
HomCoord from1,
HomCoord to1,
HomCoord from2,
HomCoord to2,
HomCoord from3,
HomCoord to3,
bool bb_input = false,
const HomCoord& bb_min = HomCoord::getUnitv( 0 ),
const HomCoord& bb_max = HomCoord::getUnitv( 0 ) );
// const HomCoord &bb_min = HomCoord::unitv[0],
// const HomCoord &bb_max = HomCoord::unitv[0]);
//! Return whether this box has all its vertices defined
/** Tests whether vertex boxs added with add_vbox have completely defined the vertex parametric
* space for this box.
*
*/
bool boundary_complete() const;
//! Return highest topological dimension of box
inline int box_dimension() const;
//! Starting vertex handle for this box
inline EntityHandle start_vertex() const;
//! Starting entity handle for this box
/** If this is a vertex box, the start vertex handle is returned.
*/
inline EntityHandle start_element() const;
//! Return the number of elements in the box
/* Number of elements is (boxSize[0]-1)(boxSize[1]-1)(boxSize[2]-1)
*/
inline int num_elements() const;
//! Return the number of vertices in the box
/* Number of vertices is boxSize[0] * boxSize[1] * boxSize[2]
*/
inline int num_vertices() const;
//! Return the parametric coordinates for this box
/**
* \return IJK parameters of lower and upper corners
*/
inline const int* box_dims() const;
//! Return the lower corner parametric coordinates for this box
inline HomCoord box_min() const;
//! Return the upper corner parametric coordinates for this box
inline HomCoord box_max() const;
//! Return the parameter extents for this box
inline HomCoord box_size() const;
//! Return the parametric extents for this box
/**
* \param ijk IJK extents of this box
*/
inline void box_size( int* ijk ) const;
//! Return the parametric extents for this box
/**
* \param i I extent of this box
* \param j J extent of this box
* \param k K extent of this box
*/
void box_size( int& i, int& j, int& k ) const;
//! Get the element at the specified coordinates
/**
* \param ijk Parametric coordinates being evaluated
*/
EntityHandle get_element( const HomCoord& ijk ) const;
//! Get the element at the specified coordinates
/**
* \param i Parametric coordinates being evaluated
* \param j Parametric coordinates being evaluated
* \param k Parametric coordinates being evaluated
*/
EntityHandle get_element( int i, int j = 0, int k = 0 ) const;
//! Get the vertex at the specified coordinates
/**
* \param ijk Parametric coordinates being evaluated
*/
EntityHandle get_vertex( const HomCoord& ijk ) const;
//! Get the vertex at the specified coordinates
/**
* \param i Parametric coordinates being evaluated
* \param j Parametric coordinates being evaluated
* \param k Parametric coordinates being evaluated
*/
EntityHandle get_vertex( int i, int j = 0, int k = 0 ) const;
//! Get parametric coordinates of the specified entity
/** This function returns MB_ENTITY_NOT_FOUND if the entity is not
* in this ScdBox.
* \param ent Entity being queried
* \param i Parametric coordinates returned
* \param j Parametric coordinates returned
* \param k Parametric coordinates returned
* \param dir Parametric coordinate direction returned (in case of getting adjacent
* edges (2d, 3d) or faces (3d); not modified otherwise
*/
ErrorCode get_params( EntityHandle ent, int& i, int& j, int& k, int& dir ) const;
//! Get parametric coordinates of the specified entity, intermediate entities not allowed (no
//! dir parameter)
/** This function returns MB_ENTITY_NOT_FOUND if the entity is not
* in this ScdBox, or MB_FAILURE if the entity is an intermediate-dimension entity.
* \param ent Entity being queried
* \param i Parametric coordinates returned
* \param j Parametric coordinates returned
* \param k Parametric coordinates returned
*/
ErrorCode get_params( EntityHandle ent, int& i, int& j, int& k ) const;
//! Get parametric coordinates of the specified entity
/** This function returns MB_ENTITY_NOT_FOUND if the entity is not
* in this ScdBox.
* \param ent Entity being queried
* \param ijkd Parametric coordinates returned (including direction, in case of
* getting adjacent edges (2d, 3d) or faces (3d))
*/
ErrorCode get_params( EntityHandle ent, HomCoord& ijkd ) const;
/** \brief Get the adjacent edge or face at a parametric location
* This function gets the left (i=0), front (j=0), or bottom (k=0) edge or face for a parametric
* element. Left, front, or bottom is indicated by dir = 0, 1, or 2, resp. All edges and faces
* in a structured mesh block can be accessed using these parameters. \param dim Dimension of
* adjacent entity being requested \param i Parametric coordinates of cell being evaluated
* \param j Parametric coordinates of cell being evaluated
* \param k Parametric coordinates of cell being evaluated
* \param dir Direction (0, 1, or 2), for getting adjacent edges (2d, 3d) or faces (3d)
* \param ent Entity returned from this function
* \param create_if_missing If true, creates the entity if it doesn't already exist
*/
ErrorCode get_adj_edge_or_face( int dim,
int i,
int j,
int k,
int dir,
EntityHandle& ent,
bool create_if_missing = true ) const;
//! Return whether the box contains the parameters passed in
/**
* \param i Parametric coordinates being evaluated
* \param j Parametric coordinates being evaluated
* \param k Parametric coordinates being evaluated
*/
bool contains( int i, int j, int k ) const;
//! Return whether the box contains the parameters passed in
/**
* \param i Parametric coordinates being evaluated
* \param j Parametric coordinates being evaluated
* \param k Parametric coordinates being evaluated
*/
bool contains( const HomCoord& ijk ) const;
//! Set/Get the entity set representing the box
void box_set( EntityHandle this_set );
EntityHandle box_set();
//! Get coordinate arrays for vertex coordinates for a structured block
/** Returns error if there isn't a single vertex sequence associated with this structured block
* \param xc X coordinate array pointer returned
* \param yc Y coordinate array pointer returned
* \param zc Z coordinate array pointer returned
*/
ErrorCode get_coordinate_arrays( double*& xc, double*& yc, double*& zc );
//! Get read-only coordinate arrays for vertex coordinates for a structured block
/** Returns error if there isn't a single vertex sequence associated with this structured block
* \param xc X coordinate array pointer returned
* \param yc Y coordinate array pointer returned
* \param zc Z coordinate array pointer returned
*/
ErrorCode get_coordinate_arrays( const double*& xc, const double*& yc, const double*& zc ) const;
//! Return whether box is locally periodic in i
/** Return whether box is locally periodic in i
* \return True if box is locally periodic in i direction
*/
bool locally_periodic_i() const;
//! Return whether box is locally periodic in j
/** Return whether box is locally periodic in j
* \return True if box is locally periodic in j direction
*/
bool locally_periodic_j() const;
//! Return whether box is locally periodic in k
/** Return whether box is locally periodic in k
* \return True if box is locally periodic in k direction
*/
bool locally_periodic_k() const;
//! Set local periodicity
/**
* \param lperiodic Vector of ijk periodicities to set this box to
*/
void locally_periodic( bool lperiodic[3] );
//! Get local periodicity
/**
* \return Vector of ijk periodicities for this box
*/
const int* locally_periodic() const;
//! Return parallel data
/** Return parallel data, if there is any
* \return par_data Parallel data set on this box
*/
ScdParData& par_data()
{
return parData;
}
//! Return parallel data
/** Return parallel data, if there is any
* \return par_data Parallel data set on this box
*/
const ScdParData& par_data() const
{
return parData;
}
//! set parallel data
/** Set parallel data for this box
* \param par_data Parallel data to be set on this box
*/
void par_data( const ScdParData& par_datap )
{
parData = par_datap;
}
private:
//! Constructor
/** Create a structured box instance; this constructor is private because it should only be
* called from ScdInterface, a friend class. This constructor takes two sequences, one of which
* can be NULL. If both sequences come in non-NULL, the first should be a VertexSequence*
* corresponding to a structured vertex sequence and the second should be a
* StructuredElementSeq*. If the 2nd is NULL, the first can be either of those types. The
* other members of this class are taken from the sequences (e.g. parametric space) or the box
* set argument. Tags on the box set should be set from the caller. \param sc_impl A
* ScdInterface instance \param box_set Entity set representing this rectangle \param seq1 An
* EntitySequence (see ScdBox description) \param seq2 An EntitySequence (see ScdBox
* description), or NULL
*/
ScdBox( ScdInterface* sc_impl, EntityHandle box_set, EntitySequence* seq1, EntitySequence* seq2 = NULL );
//! function to get vertex handle directly from sequence
/** \param i Parameter being queried
* \param j Parameter being queried
* \param k Parameter being queried
*/
EntityHandle get_vertex_from_seq( int i, int j, int k ) const;
//! set the vertex sequence
ErrorCode vert_dat( ScdVertexData* vert_dat );
//! get the vertex sequence
ScdVertexData* vert_dat() const;
//! set the element sequence
ErrorCode elem_seq( EntitySequence* elem_seq );
//! get the element sequence
StructuredElementSeq* elem_seq() const;
//! Set the starting vertex handle for this box
void start_vertex( EntityHandle startv );
//! Set the starting entity handle for this box
void start_element( EntityHandle starte );
//! interface instance
ScdInterface* scImpl;
//! entity set representing this box
EntityHandle boxSet;
//! vertex sequence this box represents, if there's only one, otherwise they're
//! retrieved from the element sequence
ScdVertexData* vertDat;
//! element sequence this box represents
StructuredElementSeq* elemSeq;
//! starting vertex handle for this box
EntityHandle startVertex;
//! starting element handle for this box
EntityHandle startElem;
//! lower and upper corners
int boxDims[6];
//! is locally periodic in i or j or k
int locallyPeriodic[3];
//! parallel data associated with this box, if any
ScdParData parData;
//! parameter extents
HomCoord boxSize;
//! convenience parameters, (boxSize[1]-1)*(boxSize[0]-1) and boxSize[0]-1
int boxSizeIJ;
int boxSizeIJM1;
int boxSizeIM1;
};
inline ErrorCode ScdInterface::compute_partition( int np,
int nr,
const ScdParData& par_data,
int* ldims,
int* lperiodic,
int* pdims )
{
ErrorCode rval = MB_SUCCESS;
switch( par_data.partMethod )
{
case ScdParData::ALLJORKORI:
case -1:
rval = compute_partition_alljorkori( np, nr, par_data.gDims, par_data.gPeriodic, ldims, lperiodic, pdims );
break;
case ScdParData::ALLJKBAL:
rval = compute_partition_alljkbal( np, nr, par_data.gDims, par_data.gPeriodic, ldims, lperiodic, pdims );
break;
case ScdParData::SQIJ:
rval = compute_partition_sqij( np, nr, par_data.gDims, par_data.gPeriodic, ldims, lperiodic, pdims );
break;
case ScdParData::SQJK:
rval = compute_partition_sqjk( np, nr, par_data.gDims, par_data.gPeriodic, ldims, lperiodic, pdims );
break;
case ScdParData::SQIJK:
rval = compute_partition_sqijk( np, nr, par_data.gDims, par_data.gPeriodic, ldims, lperiodic, pdims );
break;
default:
rval = MB_FAILURE;
break;
}
return rval;
}
inline ErrorCode ScdInterface::compute_partition_alljorkori( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* ldims,
int* lperiodic,
int* pijk )
{
// partition *the elements* over the parametric space; 1d partition for now, in the j, k, or i
// parameters
int tmp_lp[3], tmp_pijk[3];
if( !lperiodic ) lperiodic = tmp_lp;
if( !pijk ) pijk = tmp_pijk;
for( int i = 0; i < 3; i++ )
lperiodic[i] = gperiodic[i];
if( np == 1 )
{
if( ldims )
{
ldims[0] = gijk[0];
ldims[3] = gijk[3];
ldims[1] = gijk[1];
ldims[4] = gijk[4];
ldims[2] = gijk[2];
ldims[5] = gijk[5];
}
pijk[0] = pijk[1] = pijk[2] = 1;
}
else
{
if( gijk[4] - gijk[1] > np )
{
// partition j over procs
int dj = ( gijk[4] - gijk[1] ) / np;
int extra = ( gijk[4] - gijk[1] ) % np;
ldims[1] = gijk[1] + nr * dj + std::min( nr, extra );
ldims[4] = ldims[1] + dj + ( nr < extra ? 1 : 0 );
if( gperiodic[1] && np > 1 )
{
lperiodic[1] = 0;
ldims[4]++;
}
ldims[2] = gijk[2];
ldims[5] = gijk[5];
ldims[0] = gijk[0];
ldims[3] = gijk[3];
pijk[0] = pijk[2] = 1;
pijk[1] = np;
}
else if( gijk[5] - gijk[2] > np )
{
// partition k over procs
int dk = ( gijk[5] - gijk[2] ) / np;
int extra = ( gijk[5] - gijk[2] ) % np;
ldims[2] = gijk[2] + nr * dk + std::min( nr, extra );
ldims[5] = ldims[2] + dk + ( nr < extra ? 1 : 0 );
ldims[1] = gijk[1];
ldims[4] = gijk[4];
ldims[0] = gijk[0];
ldims[3] = gijk[3];
pijk[0] = pijk[1] = 1;
pijk[2] = np;
}
else if( gijk[3] - gijk[0] > np )
{
// partition i over procs
int di = ( gijk[3] - gijk[0] ) / np;
int extra = ( gijk[3] - gijk[0] ) % np;
ldims[0] = gijk[0] + nr * di + std::min( nr, extra );
ldims[3] = ldims[0] + di + ( nr < extra ? 1 : 0 );
if( gperiodic[0] && np > 1 )
{
lperiodic[0] = 0;
ldims[3]++;
}
ldims[2] = gijk[2];
ldims[5] = gijk[5];
ldims[1] = gijk[1];
ldims[4] = gijk[4];
pijk[1] = pijk[2] = 1;
pijk[0] = np;
}
else
{
// Couldn't find a suitable partition...
return MB_FAILURE;
}
}
return MB_SUCCESS;
}
inline ErrorCode ScdInterface::compute_partition_alljkbal( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* ldims,
int* lperiodic,
int* pijk )
{
int tmp_lp[3], tmp_pijk[3];
if( !lperiodic ) lperiodic = tmp_lp;
if( !pijk ) pijk = tmp_pijk;
for( int i = 0; i < 3; i++ )
lperiodic[i] = gperiodic[i];
if( np == 1 )
{
if( ldims )
{
ldims[0] = gijk[0];
ldims[3] = gijk[3];
ldims[1] = gijk[1];
ldims[4] = gijk[4];
ldims[2] = gijk[2];
ldims[5] = gijk[5];
}
pijk[0] = pijk[1] = pijk[2] = 1;
}
else
{
// improved, possibly 2-d partition
std::vector< double > kfactors;
kfactors.push_back( 1 );
int K = gijk[5] - gijk[2];
for( int i = 2; i < K; i++ )
if( !( K % i ) && !( np % i ) ) kfactors.push_back( i );
kfactors.push_back( K );
// compute the ideal nj and nk
int J = gijk[4] - gijk[1];
double njideal = sqrt( ( (double)( np * J ) ) / ( (double)K ) );
double nkideal = ( njideal * K ) / J;
int nk, nj;
if( nkideal < 1.0 )
{
nk = 1;
nj = np;
}
else
{
std::vector< double >::iterator vit = std::lower_bound( kfactors.begin(), kfactors.end(), nkideal );
if( vit == kfactors.begin() )
nk = 1;
else
nk = (int)*( --vit );
nj = np / nk;
}
int dk = K / nk;
int dj = J / nj;
ldims[2] = gijk[2] + ( nr % nk ) * dk;
ldims[5] = ldims[2] + dk;
int extra = J % nj;
ldims[1] = gijk[1] + ( nr / nk ) * dj + std::min( nr / nk, extra );
ldims[4] = ldims[1] + dj + ( nr / nk < extra ? 1 : 0 );
ldims[0] = gijk[0];
ldims[3] = gijk[3];
if( gperiodic[1] && np > 1 )
{
lperiodic[1] = 0;
if( nr / nk == nj - 1 )
{
ldims[1]++;
}
}
pijk[0] = 1;
pijk[1] = nj;
pijk[2] = nk;
}
return MB_SUCCESS;
}
inline ErrorCode ScdInterface::compute_partition_sqij( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* ldims,
int* lperiodic,
int* pijk )
{
int tmp_lp[3], tmp_pijk[3];
if( !lperiodic ) lperiodic = tmp_lp;
if( !pijk ) pijk = tmp_pijk;
// square IxJ partition
for( int i = 0; i < 3; i++ )
lperiodic[i] = gperiodic[i];
if( np == 1 )
{
if( ldims )
{
ldims[0] = gijk[0];
ldims[3] = gijk[3];
ldims[1] = gijk[1];
ldims[4] = gijk[4];
ldims[2] = gijk[2];
ldims[5] = gijk[5];
}
pijk[0] = pijk[1] = pijk[2] = 1;
}
else
{
std::vector< double > pfactors, ppfactors;
for( int i = 2; i <= np / 2; i++ )
if( !( np % i ) )
{
pfactors.push_back( i );
ppfactors.push_back( ( (double)( i * i ) ) / np );
}
pfactors.push_back( np );
ppfactors.push_back( (double)np );
// ideally, Px/Py = I/J
double ijratio = ( (double)( gijk[3] - gijk[0] ) ) / ( (double)( gijk[4] - gijk[1] ) );
unsigned int ind = 0;
std::vector< double >::iterator optimal = std::lower_bound( ppfactors.begin(), ppfactors.end(), ijratio );
if( optimal == ppfactors.end() )
{
ind = ppfactors.size() - 1;
}
else
{
ind = optimal - ppfactors.begin();
if( ind && fabs( ppfactors[ind - 1] - ijratio ) < fabs( ppfactors[ind] - ijratio ) ) ind--;
}
// VARIABLES DESCRIBING THE MESH:
// pi, pj = # procs in i and j directions
// nri, nrj = my proc's position in i, j directions
// I, J = # edges/elements in i, j directions
// iextra, jextra = # procs having extra edge in i/j direction
// top_i, top_j = if true, I'm the last proc in the i/j direction
// i, j = # edges locally in i/j direction, *not* including one for iextra/jextra
int pi = pfactors[ind];
int pj = np / pi;
int I = ( gijk[3] - gijk[0] ), J = ( gijk[4] - gijk[1] );
int iextra = I % pi, jextra = J % pj, i = I / pi, j = J / pj;
int nri = nr % pi, nrj = nr / pi;
if( ldims )
{
ldims[0] = gijk[0] + i * nri + std::min( iextra, nri );
ldims[3] = ldims[0] + i + ( nri < iextra ? 1 : 0 );
ldims[1] = gijk[1] + j * nrj + std::min( jextra, nrj );
ldims[4] = ldims[1] + j + ( nrj < jextra ? 1 : 0 );
ldims[2] = gijk[2];
ldims[5] = gijk[5];
if( gperiodic[0] && pi > 1 )
{
lperiodic[0] = 0;
if( nri == pi - 1 ) ldims[3]++;
}
if( gperiodic[1] && pj > 1 )
{
lperiodic[1] = 0;
if( nrj == pj - 1 ) ldims[4]++;
}
}
pijk[0] = pi;
pijk[1] = pj;
pijk[2] = 1;
}
return MB_SUCCESS;
}
inline ErrorCode ScdInterface::compute_partition_sqjk( int np,
int nr,
const int gijk[6],
const int* const gperiodic,
int* ldims,
int* lperiodic,
int* pijk )
{
int tmp_lp[3], tmp_pijk[3];
if( !lperiodic ) lperiodic = tmp_lp;
if( !pijk ) pijk = tmp_pijk;
// square JxK partition
for( int i = 0; i < 3; i++ )
lperiodic[i] = gperiodic[i];
if( np == 1 )
{
if( ldims )
{
ldims[0] = gijk[0];
ldims[3] = gijk[3];
ldims[1] = gijk[1];
ldims[4] = gijk[4];
ldims[2] = gijk[2];
ldims[5] = gijk[5];
}
pijk[0] = pijk[1] = pijk[2] = 1;
}
else
{
std::vector< double > pfactors, ppfactors;
for( int p = 2; p <= np; p++ )
if( !( np % p ) )
{
pfactors.push_back( p );
ppfactors.push_back( ( (double)( p * p ) ) / np );
}
// ideally, Pj/Pk = J/K
int pj, pk;
if( gijk[5] == gijk[2] )
{
pk = 1;
pj = np;
}
else
{
double jkratio = ( (double)( gijk[4] - gijk[1] ) ) / ( (double)( gijk[5] - gijk[2] ) );
std::vector< double >::iterator vit = std::lower_bound( ppfactors.begin(), ppfactors.end(), jkratio );
if( vit == ppfactors.end() )
--vit;
else if( vit != ppfactors.begin() && fabs( *( vit - 1 ) - jkratio ) < fabs( ( *vit ) - jkratio ) )
--vit;
int ind = vit - ppfactors.begin();
pj = 1;
if( ind >= 0 && !pfactors.empty() ) pfactors[ind];
pk = np / pj;
}
int K = ( gijk[5] - gijk[2] ), J = ( gijk[4] - gijk[1] );
int jextra = J % pj, kextra = K % pk, j = J / pj, k = K / pk;
int nrj = nr % pj, nrk = nr / pj;
ldims[1] = gijk[1] + j * nrj + std::min( jextra, nrj );
ldims[4] = ldims[1] + j + ( nrj < jextra ? 1 : 0 );
ldims[2] = gijk[2] + k * nrk + std::min( kextra, nrk );
ldims[5] = ldims[2] + k + ( nrk < kextra ? 1 : 0 );
ldims[0] = gijk[0];
ldims[3] = gijk[3];
if( gperiodic[1] && pj > 1 )
{
lperiodic[1] = 0;
if( nrj == pj - 1 ) ldims[4]++;
}
pijk[0] = 1;
pijk[1] = pj;
pijk[2] = pk;
}
return MB_SUCCESS;
}
inline ErrorCode ScdInterface::compute_partition_sqijk( int np,
int nr,
const int* const gijk,
const int* const gperiodic,
int* ldims,
int* lperiodic,
int* pijk )
{
if( gperiodic[0] || gperiodic[1] || gperiodic[2] ) return MB_FAILURE;
int tmp_lp[3], tmp_pijk[3];
if( !lperiodic ) lperiodic = tmp_lp;
if( !pijk ) pijk = tmp_pijk;
// square IxJxK partition
for( int i = 0; i < 3; i++ )
lperiodic[i] = gperiodic[i];
if( np == 1 )
{
if( ldims )
for( int i = 0; i < 6; i++ )
ldims[i] = gijk[i];
pijk[0] = pijk[1] = pijk[2] = 1;
return MB_SUCCESS;
}
std::vector< int > pfactors;
pfactors.push_back( 1 );
for( int i = 2; i <= np / 2; i++ )
if( !( np % i ) ) pfactors.push_back( i );
pfactors.push_back( np );
// test for IJ, JK, IK
int IJK[3], dIJK[3];
for( int i = 0; i < 3; i++ )
IJK[i] = std::max( gijk[3 + i] - gijk[i], 1 );
// order IJK from lo to hi
int lo = 0, hi = 0;
for( int i = 1; i < 3; i++ )
{
if( IJK[i] < IJK[lo] ) lo = i;
if( IJK[i] > IJK[hi] ) hi = i;
}
if( lo == hi ) hi = ( lo + 1 ) % 3;
int mid = 3 - lo - hi;
// search for perfect subdivision of np that balances #cells
int perfa_best = -1, perfb_best = -1;
double ratio = 0.0;
for( int po = 0; po < (int)pfactors.size(); po++ )
{
for( int pi = po; pi < (int)pfactors.size() && np / ( pfactors[po] * pfactors[pi] ) >= pfactors[pi]; pi++ )
{
int p3 =
std::find( pfactors.begin(), pfactors.end(), np / ( pfactors[po] * pfactors[pi] ) ) - pfactors.begin();
if( p3 == (int)pfactors.size() || pfactors[po] * pfactors[pi] * pfactors[p3] != np )
continue; // po*pi should exactly factor np
assert( po <= pi && pi <= p3 );
// by definition, po <= pi <= p3
double minl =
std::min( std::min( IJK[lo] / pfactors[po], IJK[mid] / pfactors[pi] ), IJK[hi] / pfactors[p3] ),
maxl =
std::max( std::max( IJK[lo] / pfactors[po], IJK[mid] / pfactors[pi] ), IJK[hi] / pfactors[p3] );
if( minl / maxl > ratio )
{
ratio = minl / maxl;
perfa_best = po;
perfb_best = pi;
}
}
}
if( perfa_best == -1 || perfb_best == -1 ) return MB_FAILURE;
// VARIABLES DESCRIBING THE MESH:
// pijk[i] = # procs in direction i
// numr[i] = my proc's position in direction i
// dIJK[i] = # edges/elements in direction i
// extra[i]= # procs having extra edge in direction i
// top[i] = if true, I'm the last proc in direction i
pijk[lo] = pfactors[perfa_best];
pijk[mid] = pfactors[perfb_best];
pijk[hi] = ( np / ( pfactors[perfa_best] * pfactors[perfb_best] ) );
int extra[3] = { 0, 0, 0 }, numr[3];
for( int i = 0; i < 3; i++ )
{
dIJK[i] = IJK[i] / pijk[i];
extra[i] = IJK[i] % pijk[i];
}
numr[2] = nr / ( pijk[0] * pijk[1] );
int rem = nr % ( pijk[0] * pijk[1] );
numr[1] = rem / pijk[0];
numr[0] = rem % pijk[0];
for( int i = 0; i < 3; i++ )
{
extra[i] = IJK[i] % dIJK[i];
ldims[i] = gijk[i] + numr[i] * dIJK[i] + std::min( extra[i], numr[i] );
ldims[3 + i] = ldims[i] + dIJK[i] + ( numr[i] < extra[i] ? 1 : 0 );
}
return MB_SUCCESS;
}
inline int ScdInterface::gtol( const int* gijk, int i, int j, int k )
{
return ( ( k - gijk[2] ) * ( gijk[3] - gijk[0] + 1 ) * ( gijk[4] - gijk[1] + 1 ) +
( j - gijk[1] ) * ( gijk[3] - gijk[0] + 1 ) + i - gijk[0] );
}
inline ErrorCode ScdInterface::get_indices( const int* const ldims,
const int* const rdims,
const int* const across_bdy,
int* face_dims,
std::vector< int >& shared_indices )
{
// check for going across periodic bdy and face_dims not in my ldims (I'll always be on top in
// that case)...
if( across_bdy[0] > 0 && face_dims[0] != ldims[3] )
face_dims[0] = face_dims[3] = ldims[3];
else if( across_bdy[0] < 0 && face_dims[0] != ldims[0] )
face_dims[0] = face_dims[3] = ldims[0];
if( across_bdy[1] > 0 && face_dims[1] != ldims[4] )
face_dims[1] = face_dims[4] = ldims[4];
else if( across_bdy[1] < 0 && face_dims[1] != ldims[1] )
face_dims[0] = face_dims[3] = ldims[1];
for( int k = face_dims[2]; k <= face_dims[5]; k++ )
for( int j = face_dims[1]; j <= face_dims[4]; j++ )
for( int i = face_dims[0]; i <= face_dims[3]; i++ )
shared_indices.push_back( gtol( ldims, i, j, k ) );
if( across_bdy[0] > 0 && face_dims[0] != rdims[0] )
face_dims[0] = face_dims[3] = rdims[0];
else if( across_bdy[0] < 0 && face_dims[0] != rdims[3] )
face_dims[0] = face_dims[3] = rdims[3];
if( across_bdy[1] > 0 && face_dims[1] != rdims[1] )
face_dims[1] = face_dims[4] = rdims[1];
else if( across_bdy[1] < 0 && face_dims[1] != rdims[4] )
face_dims[0] = face_dims[3] = rdims[4];
for( int k = face_dims[2]; k <= face_dims[5]; k++ )
for( int j = face_dims[1]; j <= face_dims[4]; j++ )
for( int i = face_dims[0]; i <= face_dims[3]; i++ )
shared_indices.push_back( gtol( rdims, i, j, k ) );
return MB_SUCCESS;
}
inline ErrorCode ScdInterface::get_neighbor( int np,
int pfrom,
const ScdParData& spd,
const int* const dijk,
int& pto,
int* rdims,
int* facedims,
int* across_bdy )
{
if( !dijk[0] && !dijk[1] && !dijk[2] )
{
// not going anywhere, return
pto = -1;
return MB_SUCCESS;
}
switch( spd.partMethod )
{
case ScdParData::ALLJORKORI:
case -1:
return get_neighbor_alljorkori( np, pfrom, spd.gDims, spd.gPeriodic, dijk, pto, rdims, facedims,
across_bdy );
case ScdParData::ALLJKBAL:
return get_neighbor_alljkbal( np, pfrom, spd.gDims, spd.gPeriodic, dijk, pto, rdims, facedims, across_bdy );
case ScdParData::SQIJ:
return get_neighbor_sqij( np, pfrom, spd.gDims, spd.gPeriodic, dijk, pto, rdims, facedims, across_bdy );
case ScdParData::SQJK:
return get_neighbor_sqjk( np, pfrom, spd.gDims, spd.gPeriodic, dijk, pto, rdims, facedims, across_bdy );
case ScdParData::SQIJK:
return get_neighbor_sqijk( np, pfrom, spd.gDims, spd.gPeriodic, dijk, pto, rdims, facedims, across_bdy );
default:
break;
}
return MB_FAILURE;
}
inline ErrorCode ScdInterface::tag_shared_vertices( ParallelComm* pcomm, EntityHandle seth )
{
ScdBox* box = get_scd_box( seth );
if( !box )
{
// look for contained boxes
Range tmp_range;
ErrorCode rval = mbImpl->get_entities_by_type( seth, MBENTITYSET, tmp_range );
if( MB_SUCCESS != rval ) return rval;
for( Range::iterator rit = tmp_range.begin(); rit != tmp_range.end(); ++rit )
{
box = get_scd_box( *rit );
if( box ) break;
}
}
if( !box ) return MB_FAILURE;
return tag_shared_vertices( pcomm, box );
}
inline ScdInterface* ScdBox::sc_impl() const
{
return scImpl;
}
inline EntityHandle ScdBox::start_vertex() const
{
return startVertex;
}
inline void ScdBox::start_vertex( EntityHandle startv )
{
startVertex = startv;
}
inline EntityHandle ScdBox::start_element() const
{
return startElem;
}
inline void ScdBox::start_element( EntityHandle starte )
{
startElem = starte;
}
inline int ScdBox::num_elements() const
{
if( !startElem ) return 0; // not initialized yet
/* for a structured mesh, total number of elements is obtained by multiplying
number of elements in each direction
number of elements in each direction is given by number of vertices in that direction minus 1
if periodic in that direction, the last vertex is the same as first one, count one more
element
*/
int num_e_i = ( -1 == boxSize[0] || 1 == boxSize[0] ) ? 1 : boxSize[0] - 1;
if( locallyPeriodic[0] ) ++num_e_i;
int num_e_j = ( -1 == boxSize[1] || 1 == boxSize[1] ) ? 1 : boxSize[1] - 1;
if( locallyPeriodic[1] ) ++num_e_j;
int num_e_k = ( -1 == boxSize[2] || 1 == boxSize[2] ) ? 1 : boxSize[2] - 1;
if( locallyPeriodic[2] ) ++num_e_k;
return num_e_i * num_e_j * num_e_k;
}
inline int ScdBox::num_vertices() const
{
return boxSize[0] * ( !boxSize[1] ? 1 : boxSize[1] ) * ( !boxSize[2] ? 1 : boxSize[2] );
}
inline const int* ScdBox::box_dims() const
{
return boxDims;
}
inline HomCoord ScdBox::box_min() const
{
return HomCoord( boxDims, 3 );
}
inline HomCoord ScdBox::box_max() const
{
return HomCoord( boxDims + 3, 3 );
}
inline HomCoord ScdBox::box_size() const
{
return boxSize;
}
inline void ScdBox::box_size( int* ijk ) const
{
ijk[0] = boxSize[0];
ijk[1] = boxSize[1];
ijk[2] = boxSize[2];
}
inline void ScdBox::box_size( int& i, int& j, int& k ) const
{
i = boxSize[0];
j = boxSize[1];
k = boxSize[2];
}
inline EntityHandle ScdBox::get_element( int i, int j, int k ) const
{
return ( !startElem
? 0
: startElem + ( k - boxDims[2] ) * boxSizeIJM1 + ( j - boxDims[1] ) * boxSizeIM1 + i - boxDims[0] );
}
inline EntityHandle ScdBox::get_element( const HomCoord& ijk ) const
{
return get_element( ijk[0], ijk[1], ijk[2] );
}
inline EntityHandle ScdBox::get_vertex( int i, int j, int k ) const
{
return ( vertDat
? startVertex + ( boxDims[2] == -1 && boxDims[5] == -1 ? 0 : ( k - boxDims[2] ) ) * boxSizeIJ +
( boxDims[1] == -1 && boxDims[4] == -1 ? 0 : ( j - boxDims[1] ) ) * boxSize[0] + i - boxDims[0]
: get_vertex_from_seq( i, j, k ) );
}
inline EntityHandle ScdBox::get_vertex( const HomCoord& ijk ) const
{
return get_vertex( ijk[0], ijk[1], ijk[2] );
}
inline bool ScdBox::contains( const HomCoord& ijk ) const
{
return ( ijk >= HomCoord( boxDims, 3 ) && ijk <= HomCoord( boxDims + 3, 3 ) );
}
inline bool ScdBox::contains( int i, int j, int k ) const
{
return contains( HomCoord( i, j, k ) );
}
inline void ScdBox::box_set( EntityHandle this_set )
{
boxSet = this_set;
}
inline EntityHandle ScdBox::box_set()
{
return boxSet;
}
inline ScdVertexData* ScdBox::vert_dat() const
{
return vertDat;
}
inline StructuredElementSeq* ScdBox::elem_seq() const
{
return elemSeq;
}
inline ErrorCode ScdBox::get_params( EntityHandle ent, int& i, int& j, int& k, int& dir ) const
{
HomCoord hc;
ErrorCode rval = get_params( ent, hc );
if( MB_SUCCESS == rval )
{
i = hc[0];
j = hc[1];
k = hc[2];
dir = hc[3];
}
return rval;
}
inline ErrorCode ScdBox::get_params( EntityHandle ent, int& i, int& j, int& k ) const
{
HomCoord hc;
ErrorCode rval = get_params( ent, hc );
if( MB_SUCCESS == rval )
{
i = hc[0];
j = hc[1];
k = hc[2];
}
return rval;
}
inline bool ScdBox::locally_periodic_i() const
{
return locallyPeriodic[0];
}
inline bool ScdBox::locally_periodic_j() const
{
return locallyPeriodic[1];
}
inline bool ScdBox::locally_periodic_k() const
{
return locallyPeriodic[2];
}
inline void ScdBox::locally_periodic( bool lperiodic[3] )
{
for( int i = 0; i < 3; i++ )
locallyPeriodic[i] = lperiodic[i];
}
inline const int* ScdBox::locally_periodic() const
{
return locallyPeriodic;
}
std::ostream& operator<<( std::ostream& str, const ScdParData& pd );
} // namespace moab
#endif
|