1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546 | /**
* MOAB, a Mesh-Oriented datABase, is a software component for creating,
* storing and accessing finite element mesh data.
*
* Copyright 2004 Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
* retains certain rights in this software.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include "AEntityFactory.hpp"
#include "Internals.hpp"
#include "moab/Core.hpp"
#include "moab/Range.hpp"
#include "moab/Error.hpp"
#include "moab/CN.hpp"
#include "moab/MeshTopoUtil.hpp"
#include "EntitySequence.hpp"
#include "SequenceData.hpp"
#include "SequenceManager.hpp"
#include "RangeSeqIntersectIter.hpp"
#include <cassert>
#include <algorithm>
#include <set>
namespace moab
{
ErrorCode AEntityFactory::get_vertices( EntityHandle h,
const EntityHandle*& vect_out,
int& count_out,
std::vector< EntityHandle >& storage )
{
ErrorCode result;
if( MBPOLYHEDRON == TYPE_FROM_HANDLE( h ) )
{
storage.clear();
result = thisMB->get_adjacencies( &h, 1, 0, false, storage );
vect_out = &storage[0];
count_out = storage.size();
}
else
{
result = thisMB->get_connectivity( h, vect_out, count_out, false, &storage );
}
return result;
}
AEntityFactory::AEntityFactory( Core* mdb )
{
assert( NULL != mdb );
thisMB = mdb;
mVertElemAdj = false;
}
AEntityFactory::~AEntityFactory()
{
// clean up all the adjacency information that was created
EntityType ent_type;
// iterate through each element type
for( ent_type = MBVERTEX; ent_type <= MBENTITYSET; ent_type++ )
{
TypeSequenceManager::iterator i;
TypeSequenceManager& seqman = thisMB->sequence_manager()->entity_map( ent_type );
for( i = seqman.begin(); i != seqman.end(); ++i )
{
std::vector< EntityHandle >** adj_list = ( *i )->data()->get_adjacency_data();
if( !adj_list ) continue;
adj_list += ( *i )->start_handle() - ( *i )->data()->start_handle();
for( EntityID j = 0; j < ( *i )->size(); ++j )
{
delete adj_list[j];
adj_list[j] = 0;
}
}
}
}
//! get the elements contained by source_entity, of
//! type target_type, passing back in target_entities; if create_if_missing
//! is true and no entity is found, one is created; if create_adjacency_option
//! is >= 0, adjacencies from entities of that dimension to each target_entity
//! are created (this function uses AEntityFactory::get_element for each element)
ErrorCode AEntityFactory::get_elements( EntityHandle source_entity,<--- The function 'get_elements' is never used.
const unsigned int target_dimension,
std::vector< EntityHandle >& target_entities,
const bool create_if_missing,
const int create_adjacency_option )
{
// check for trivial case first
const EntityType source_type = TYPE_FROM_HANDLE( source_entity );
const unsigned source_dimension = CN::Dimension( source_type );
if( source_type >= MBENTITYSET || target_dimension < 1 || target_dimension > 3 )
{
return MB_TYPE_OUT_OF_RANGE;
}
else if( source_dimension == target_dimension )
{
target_entities.push_back( source_entity );
return MB_SUCCESS;
}
ErrorCode result;
if( mVertElemAdj == false )
{
result = create_vert_elem_adjacencies();
if( MB_SUCCESS != result ) return result;
}
if( source_dimension == 0 )
{
result = get_zero_to_n_elements( source_entity, target_dimension, target_entities, create_if_missing,
create_adjacency_option );
}
else if( source_dimension > target_dimension )
{
result = get_down_adjacency_elements( source_entity, target_dimension, target_entities, create_if_missing,
create_adjacency_option );
}
else // if(source_dimension < target_dimension)
{
result = get_up_adjacency_elements( source_entity, target_dimension, target_entities, create_if_missing,
create_adjacency_option );
}
return result;
}
ErrorCode AEntityFactory::get_polyhedron_vertices( const EntityHandle source_entity,
std::vector< EntityHandle >& target_entities )
{
// get the connectivity array pointer
const EntityHandle* connect = NULL;
int num_connect = 0;
ErrorCode result = thisMB->get_connectivity( source_entity, connect, num_connect );
if( MB_SUCCESS != result ) return result;
// now get the union of those polygons' vertices
result = thisMB->get_adjacencies( connect, num_connect, 0, false, target_entities, Interface::UNION );
return result;
}
ErrorCode AEntityFactory::get_associated_meshsets( EntityHandle source_entity,
std::vector< EntityHandle >& target_entities )
{
ErrorCode result;
const EntityHandle* adj_vec;
int num_adj;
result = get_adjacencies( source_entity, adj_vec, num_adj );
if( result != MB_SUCCESS || adj_vec == NULL ) return result;
// find the meshsets in this vector
DimensionPair dim_pair = CN::TypeDimensionMap[4];
int dum;
const EntityHandle* start_ent =
std::lower_bound( adj_vec, adj_vec + num_adj, CREATE_HANDLE( dim_pair.first, MB_START_ID, dum ) );
const EntityHandle* end_ent =
std::lower_bound( start_ent, adj_vec + num_adj, CREATE_HANDLE( dim_pair.second, MB_END_ID, dum ) );
// copy the the meshsets
target_entities.insert( target_entities.end(), start_ent, end_ent );
return result;
}
//! get the element defined by the vertices in vertex_list, of the
//! type target_type, passing back in target_entity; if create_if_missing
//! is true and no entity is found, one is created; if create_adjacency_option
//! is >= 0, adjacencies from entities of that dimension to target_entity
//! are created (only create_adjacency_option=0 is supported right now,
//! so that never creates other ancillary entities)
ErrorCode AEntityFactory::get_element( const EntityHandle* vertex_list,
const int vertex_list_size,
const EntityType target_type,
EntityHandle& target_entity,
const bool create_if_missing,
const EntityHandle source_entity,
const int /*create_adjacency_option*/ )
{
// look over nodes to see if this entity already exists
target_entity = 0;
ErrorCode result;
const EntityHandle *i_adj, *end_adj;
// need vertex adjacencies, so create if necessary
if( mVertElemAdj == false ) create_vert_elem_adjacencies();
// get the adjacency list
const EntityHandle* adj_vec;
int num_adj;
result = get_adjacencies( vertex_list[0], adj_vec, num_adj );
if( result != MB_SUCCESS || adj_vec == NULL ) return result;
// check to see if any of these are equivalent to the vertex list
int dum;
// use a fixed-size array, for speed; there should never be more than 5 equivalent entities
EntityHandle temp_vec[15];
int temp_vec_size = 0;
i_adj = std::lower_bound( adj_vec, adj_vec + num_adj, CREATE_HANDLE( target_type, MB_START_ID, dum ) );
end_adj = std::lower_bound( i_adj, adj_vec + num_adj, CREATE_HANDLE( target_type, MB_END_ID, dum ) );
for( ; i_adj != end_adj; ++i_adj )
{
if( TYPE_FROM_HANDLE( *i_adj ) != target_type ) continue;
if( true == entities_equivalent( *i_adj, vertex_list, vertex_list_size, target_type ) )
{
temp_vec[temp_vec_size++] = *i_adj;
}
}
if( temp_vec_size == 0 && !create_if_missing ) return result;
// test for size against fixed-size array
assert( temp_vec_size <= 15 );
// test for empty first, 'cuz it's cheap
if( temp_vec_size == 0 && true == create_if_missing )
{
// Create the element with this handle (handle is a return type and should be the last
// parameter)
result = thisMB->create_element( target_type, vertex_list, vertex_list_size, target_entity );
}
// next most likely is one entity
else if( temp_vec_size == 1 )
target_entity = temp_vec[0];
// least likely, most work - leave for last test
else
{
// multiple entities found - look for direct adjacencies
if( 0 != source_entity )
{
int num_adjs;
for( dum = 0; dum < temp_vec_size; dum++ )
{
result = get_adjacencies( temp_vec[dum], adj_vec, num_adjs );
if( std::find( adj_vec, ( adj_vec + num_adjs ), source_entity ) != ( adj_vec + num_adjs ) )
{
// found it, return it
target_entity = temp_vec[dum];
break;
}
}
if( 0 == target_entity &&
thisMB->dimension_from_handle( source_entity ) > CN::Dimension( target_type ) + 1 )
{
// still have multiple entities, and source dimension is two greater than target,
// so there may not be any explicit adjacencies between the two; look for common
// entities of the intermediate dimension
MeshTopoUtil mtu( thisMB );
int intermed_dim = CN::Dimension( target_type ) + 1;
for( dum = 0; dum < temp_vec_size; dum++ )
{
if( 0 != mtu.common_entity( temp_vec[dum], source_entity, intermed_dim ) )
{
target_entity = temp_vec[dum];
break;
}
}
}
}
if( target_entity == 0 )
{
// if we get here, we didn't find a matching adjacency; just take the first one, but
// return a non-success result
target_entity = temp_vec[0];
result = MB_MULTIPLE_ENTITIES_FOUND;
}
}
return result;
}
bool AEntityFactory::entities_equivalent( const EntityHandle this_entity,
const EntityHandle* vertex_list,
const int vertex_list_size,
const EntityType target_type )
{
// compare vertices of this_entity with those in the list, returning true if they
// represent the same element
EntityType this_type = TYPE_FROM_HANDLE( this_entity );
if( this_type != target_type )
return false;
else if( this_type == MBVERTEX && ( vertex_list_size > 1 || vertex_list[0] != this_entity ) )
return false;
// need to compare the actual vertices
const EntityHandle* this_vertices = NULL;
int num_this_vertices = 0;
std::vector< EntityHandle > storage;
thisMB->get_connectivity( this_entity, this_vertices, num_this_vertices, false, &storage );
// see if we can get one node id to match
assert( vertex_list_size > 0 );
int num_corner_verts =
( ( this_type == MBPOLYGON || this_type == MBPOLYHEDRON ) ? num_this_vertices
: CN::VerticesPerEntity( target_type ) );
const EntityHandle* iter = std::find( this_vertices, ( this_vertices + num_corner_verts ), vertex_list[0] );
if( iter == ( this_vertices + num_corner_verts ) ) return false;
// now lets do connectivity matching
bool they_match = true;
// line up our vectors
int i;
int offset = iter - this_vertices;
// first compare forward
for( i = 1; i < num_corner_verts; ++i )
{
if( i >= vertex_list_size )
{
they_match = false;
break;
}
if( vertex_list[i] != this_vertices[( offset + i ) % num_corner_verts] )
{
they_match = false;
break;
}
}
if( they_match == true ) return true;
they_match = true;
// then compare reverse
// offset iter to avoid addition inside loop; this just makes sure we don't
// go off beginning of this_vertices with an index < 0
offset += num_corner_verts;
for( i = 1; i < num_corner_verts; i++ )
{
if( vertex_list[i] != this_vertices[( offset - i ) % num_corner_verts] )
{
they_match = false;
break;
}
}
return they_match;
}
//! add an adjacency from from_ent to to_ent; if both_ways is true, add one
//! in reverse too
//! NOTE: this function is defined even though we may only be implementing
//! vertex-based up-adjacencies
ErrorCode AEntityFactory::add_adjacency( EntityHandle from_ent, EntityHandle to_ent, const bool both_ways )
{
EntityType to_type = TYPE_FROM_HANDLE( to_ent );
if( to_type == MBVERTEX ) return MB_ALREADY_ALLOCATED;
AdjacencyVector* adj_list_ptr = NULL;
ErrorCode result = get_adjacencies( from_ent, adj_list_ptr, true );
if( MB_SUCCESS != result ) return result;
// get an iterator to the right spot in this sorted vector
AdjacencyVector::iterator adj_iter;
if( !adj_list_ptr->empty() )
{
adj_iter = std::lower_bound( adj_list_ptr->begin(), adj_list_ptr->end(), to_ent );
if( adj_iter == adj_list_ptr->end() || to_ent != *adj_iter )
{
adj_list_ptr->insert( adj_iter, to_ent );
}
}
else
adj_list_ptr->push_back( to_ent );
// if both_ways is true, recursively call this function
if( true == both_ways && to_type != MBVERTEX ) result = add_adjacency( to_ent, from_ent, false );
return result;
}
//! remove an adjacency from from the base_entity.
ErrorCode AEntityFactory::remove_adjacency( EntityHandle base_entity, EntityHandle adj_to_remove )
{
ErrorCode result;
if( TYPE_FROM_HANDLE( base_entity ) == MBENTITYSET )
return thisMB->remove_entities( base_entity, &adj_to_remove, 1 );
// get the adjacency tag
AdjacencyVector* adj_list = NULL;
result = get_adjacencies( base_entity, adj_list );
if( adj_list == NULL || MB_SUCCESS != result ) return result;
// remove the specified entity from the adjacency list and truncate
// the list to the new length
adj_list->erase( std::remove( adj_list->begin(), adj_list->end(), adj_to_remove ), adj_list->end() );
return result;
}
//! remove all adjacencies from from the base_entity.
ErrorCode AEntityFactory::remove_all_adjacencies( EntityHandle base_entity, const bool delete_adj_list )
{
ErrorCode result;
EntityType base_type = TYPE_FROM_HANDLE( base_entity );
if( base_type == MBENTITYSET ) return thisMB->clear_meshset( &base_entity, 1 );
const int base_ent_dim = CN::Dimension( base_type );
// Remove adjacencies from element vertices back to
// this element. Also check any elements adjacent
// to the vertex and of higher dimension than this
// element for downward adjacencies to this element.
if( vert_elem_adjacencies() && base_type != MBVERTEX )
{
EntityHandle const *connvect = 0, *adjvect = 0;
int numconn = 0, numadj = 0;
std::vector< EntityHandle > connstorage;
result = get_vertices( base_entity, connvect, numconn, connstorage );
if( MB_SUCCESS != result ) return result;
for( int i = 0; i < numconn; ++i )
{
result = get_adjacencies( connvect[i], adjvect, numadj );
if( MB_SUCCESS != result ) return result;
bool remove_this = false;
for( int j = 0; j < numadj; ++j )
{
if( adjvect[j] == base_entity ) remove_this = true;
if( CN::Dimension( TYPE_FROM_HANDLE( adjvect[j] ) ) != base_ent_dim &&
explicitly_adjacent( adjvect[j], base_entity ) )
remove_adjacency( adjvect[j], base_entity );
}
if( remove_this ) remove_adjacency( connvect[i], base_entity );
}
}
// get the adjacency tag
AdjacencyVector* adj_list = 0;
result = get_adjacencies( base_entity, adj_list );
if( MB_SUCCESS != result || !adj_list ) return result;
// check adjacent entities for references back to this entity
for( AdjacencyVector::reverse_iterator it = adj_list->rbegin(); it != adj_list->rend(); ++it )
remove_adjacency( *it, base_entity );
if( delete_adj_list )
result = set_adjacency_ptr( base_entity, NULL );
else
adj_list->clear();
return MB_SUCCESS;
}
ErrorCode AEntityFactory::create_vert_elem_adjacencies()
{
mVertElemAdj = true;
EntityType ent_type;
Range::iterator i_range;
const EntityHandle* connectivity;
std::vector< EntityHandle > aux_connect;
int number_nodes;
ErrorCode result;
Range handle_range;
// 1. over all element types, for each element, create vertex-element adjacencies
for( ent_type = MBEDGE; ent_type != MBENTITYSET; ent_type++ )
{
handle_range.clear();
// get this type of entity
result = thisMB->get_entities_by_type( 0, ent_type, handle_range );
if( result != MB_SUCCESS ) return result;
for( i_range = handle_range.begin(); i_range != handle_range.end(); ++i_range )
{
result = get_vertices( *i_range, connectivity, number_nodes, aux_connect );
if( MB_SUCCESS != result ) return result;
// add the adjacency
for( int k = 0; k < number_nodes; k++ )
if( ( result = add_adjacency( connectivity[k], *i_range ) ) != MB_SUCCESS ) return result;
}
}
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_adjacencies( EntityHandle entity,
const EntityHandle*& adjacent_entities,
int& num_entities ) const
{
AdjacencyVector const* vec_ptr = 0;
ErrorCode result = get_adjacency_ptr( entity, vec_ptr );
if( MB_SUCCESS != result || !vec_ptr )
{
adjacent_entities = 0;
num_entities = 0;
return result;
}
num_entities = vec_ptr->size();
adjacent_entities = ( vec_ptr->empty() ) ? NULL : &( ( *vec_ptr )[0] );
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_adjacencies( EntityHandle entity, std::vector< EntityHandle >& adjacent_entities ) const
{
AdjacencyVector const* vec_ptr = 0;
ErrorCode result = get_adjacency_ptr( entity, vec_ptr );
if( MB_SUCCESS != result || !vec_ptr )
{
adjacent_entities.clear();
return result;
}
adjacent_entities = *vec_ptr;
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_adjacencies( EntityHandle entity, std::vector< EntityHandle >*& adj_vec, bool create )
{
adj_vec = 0;
ErrorCode result = get_adjacency_ptr( entity, adj_vec );
if( MB_SUCCESS == result && !adj_vec && create )
{
adj_vec = new AdjacencyVector;
result = set_adjacency_ptr( entity, adj_vec );
if( MB_SUCCESS != result )
{
delete adj_vec;
adj_vec = 0;
}
}
return result;
}
ErrorCode AEntityFactory::get_adjacencies( const EntityHandle source_entity,
const unsigned int target_dimension,
bool create_if_missing,
std::vector< EntityHandle >& target_entities )
{
const EntityType source_type = TYPE_FROM_HANDLE( source_entity );
const unsigned source_dimension = CN::Dimension( source_type );
ErrorCode result;
if( target_dimension == 4 )
{ // get meshsets 'source' is in
result = get_associated_meshsets( source_entity, target_entities );
}
else if( target_dimension == ( source_type != MBPOLYHEDRON ? 0 : 2 ) )
{
std::vector< EntityHandle > tmp_storage;
const EntityHandle* conn = NULL;
int len = 0;
result = thisMB->get_connectivity( source_entity, conn, len, false, &tmp_storage );
target_entities.insert( target_entities.end(), conn, conn + len );
}
else if( target_dimension == 0 && source_type == MBPOLYHEDRON )
{
result = get_polyhedron_vertices( source_entity, target_entities );
}
else if( source_dimension == target_dimension )
{
target_entities.push_back( source_entity );
result = MB_SUCCESS;
}
else
{
if( mVertElemAdj == false )
{
result = create_vert_elem_adjacencies();
if( MB_SUCCESS != result ) return result;
}
if( source_dimension == 0 )
{
result = get_zero_to_n_elements( source_entity, target_dimension, target_entities, create_if_missing );
}
else if( source_dimension > target_dimension )
{
result = get_down_adjacency_elements( source_entity, target_dimension, target_entities, create_if_missing );
}
else // if(source_dimension < target_dimension)
{
result = get_up_adjacency_elements( source_entity, target_dimension, target_entities, create_if_missing );
}
}
return result;
}
ErrorCode AEntityFactory::notify_create_entity( const EntityHandle entity,
const EntityHandle* node_array,
const int number_nodes )
{
ErrorCode result = MB_SUCCESS, tmp_result;
if( vert_elem_adjacencies() )
{
// iterate through nodes and add adjacency information
if( TYPE_FROM_HANDLE( entity ) == MBPOLYHEDRON )
{
// polyhedron - get real vertex connectivity
std::vector< EntityHandle > verts;
tmp_result = get_adjacencies( entity, 0, false, verts );
if( MB_SUCCESS != tmp_result ) return tmp_result;
for( std::vector< EntityHandle >::iterator vit = verts.begin(); vit != verts.end(); ++vit )
{
tmp_result = add_adjacency( *vit, entity );
if( MB_SUCCESS != tmp_result ) result = tmp_result;
}
}
else
{
for( unsigned int i = number_nodes; i--; )
{
tmp_result = add_adjacency( node_array[i], entity );
if( MB_SUCCESS != tmp_result ) result = tmp_result;
}
}
}
return result;
}
ErrorCode AEntityFactory::get_zero_to_n_elements( EntityHandle source_entity,
const unsigned int target_dimension,
std::vector< EntityHandle >& target_entities,
const bool create_if_missing,
const int /*create_adjacency_option = -1*/ )
{
AdjacencyVector::iterator start_ent, end_ent;
// get the adjacency vector
AdjacencyVector* adj_vec = NULL;
ErrorCode result = get_adjacencies( source_entity, adj_vec );
if( result != MB_SUCCESS || adj_vec == NULL ) return result;
if( target_dimension < 3 && create_if_missing )
{
std::vector< EntityHandle > tmp_ents;
start_ent = std::lower_bound( adj_vec->begin(), adj_vec->end(),
FIRST_HANDLE( CN::TypeDimensionMap[target_dimension + 1].first ) );
end_ent = std::lower_bound( start_ent, adj_vec->end(), LAST_HANDLE( CN::TypeDimensionMap[3].second ) );
std::vector< EntityHandle > elems( start_ent, end_ent );
// make target_dimension elements from all adjacient higher-dimension elements
for( start_ent = elems.begin(); start_ent != elems.end(); ++start_ent )
{
tmp_ents.clear();
get_down_adjacency_elements( *start_ent, target_dimension, tmp_ents, create_if_missing, 0 );
}
}
DimensionPair dim_pair = CN::TypeDimensionMap[target_dimension];
start_ent = std::lower_bound( adj_vec->begin(), adj_vec->end(), FIRST_HANDLE( dim_pair.first ) );
end_ent = std::lower_bound( start_ent, adj_vec->end(), LAST_HANDLE( dim_pair.second ) );
target_entities.insert( target_entities.end(), start_ent, end_ent );
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_down_adjacency_elements( EntityHandle source_entity,
const unsigned int target_dimension,
std::vector< EntityHandle >& target_entities,
const bool create_if_missing,
const int create_adjacency_option )
{
EntityType source_type = TYPE_FROM_HANDLE( source_entity );
if( source_type == MBPOLYHEDRON || source_type == MBPOLYGON )
return get_down_adjacency_elements_poly( source_entity, target_dimension, target_entities, create_if_missing,
create_adjacency_option );
// make this a fixed size to avoid cost of working with STL vectors
EntityHandle vertex_array[27] = {};
ErrorCode temp_result;
const EntityHandle* vertices = NULL;
int num_verts = 0;
// I know there are already vertex adjacencies for this - call
// another function to get them
std::vector< EntityHandle > storage;
ErrorCode result = thisMB->get_connectivity( source_entity, vertices, num_verts, false, &storage );
if( MB_SUCCESS != result ) return result;
int has_mid_nodes[4];
CN::HasMidNodes( source_type, num_verts, has_mid_nodes );
std::vector< int > index_list;
int num_sub_ents = CN::NumSubEntities( source_type, target_dimension );
for( int j = 0; j < num_sub_ents; j++ )
{
const CN::ConnMap& cmap = CN::mConnectivityMap[source_type][target_dimension - 1];
int verts_per_sub = cmap.num_corners_per_sub_element[j];
// get the corner vertices
for( int i = 0; i < verts_per_sub; i++ )
vertex_array[i] = vertices[cmap.conn[j][i]];
// get the ho nodes for sub-subfacets
if( has_mid_nodes[1] && target_dimension > 1 )
{
// has edge mid-nodes; for each edge, get the right mid-node and put in vertices
// first get the edge indices
index_list.clear();
int int_result = CN::AdjacentSubEntities( source_type, &j, 1, target_dimension, 1, index_list );
if( 0 != int_result ) return MB_FAILURE;
for( unsigned int k = 0; k < index_list.size(); k++ )
{
int tmp_index = CN::HONodeIndex( source_type, num_verts, 1, index_list[k] );
if( tmp_index >= (int)num_verts ) return MB_INDEX_OUT_OF_RANGE;
// put this vertex on the end; reuse verts_per_sub as an index
vertex_array[verts_per_sub++] = vertices[tmp_index];
}
}
// get the ho nodes for the target dimension
if( has_mid_nodes[target_dimension] )
{
// get the ho node index for this subfacet
int tmp_index = CN::HONodeIndex( source_type, num_verts, target_dimension, j );
if( tmp_index >= num_verts ) return MB_INDEX_OUT_OF_RANGE;
vertex_array[verts_per_sub++] = vertices[tmp_index];
}
EntityHandle tmp_target = 0;
temp_result = get_element( vertex_array, verts_per_sub, cmap.target_type[j], tmp_target, create_if_missing,
source_entity, create_adjacency_option );
if( temp_result != MB_SUCCESS )
result = temp_result;
else if( 0 != tmp_target )
target_entities.push_back( tmp_target );
// make sure we're not writing past the end of our fixed-size array
if( verts_per_sub > 27 ) return MB_INDEX_OUT_OF_RANGE;
}
return result;
}
ErrorCode AEntityFactory::get_down_adjacency_elements_poly( EntityHandle source_entity,
const unsigned int target_dimension,
std::vector< EntityHandle >& target_entities,
const bool create_if_missing,
const int /*create_adjacency_option*/ )
{
EntityType source_type = TYPE_FROM_HANDLE( source_entity );
if( !( source_type == MBPOLYHEDRON && target_dimension > 0 && target_dimension < 3 ) &&
!( source_type == MBPOLYGON && target_dimension == 1 ) )
return MB_TYPE_OUT_OF_RANGE;
// make this a fixed size to avoid cost of working with STL vectors
std::vector< EntityHandle > vertex_array;
// I know there are already vertex adjacencies for this - call
// another function to get them
ErrorCode result = get_adjacencies( source_entity, 0, false, vertex_array );
if( MB_SUCCESS != result ) return result;
ErrorCode tmp_result;
if( source_type == MBPOLYGON )
{
result = MB_SUCCESS;
// put the first vertex on the end so we have a ring
vertex_array.push_back( *vertex_array.begin() );
for( unsigned int i = 0; i < vertex_array.size() - 1; i++ )
{
Range vrange, adj_edges;
vrange.insert( vertex_array[i] );
vrange.insert( vertex_array[i + 1] );
// account for padded polygons; if the vertices are the same, skip
if( vrange.size() == 1 ) continue;
tmp_result = thisMB->get_adjacencies( vrange, 1, false, adj_edges );
if( MB_SUCCESS != tmp_result ) result = tmp_result;
if( adj_edges.size() == 1 )
{
// single edge - don't check adjacencies
target_entities.push_back( *adj_edges.begin() );
}
else if( adj_edges.size() != 0 )
{
// multiple ones - need to check for explicit adjacencies
unsigned int start_sz = target_entities.size();
const EntityHandle* explicit_adjs;
int num_exp;
for( Range::iterator rit = adj_edges.begin(); rit != adj_edges.end(); ++rit )
{
// TODO check return value
this->get_adjacencies( *rit, explicit_adjs, num_exp );
if( NULL != explicit_adjs &&
std::find( explicit_adjs, explicit_adjs + num_exp, source_entity ) != explicit_adjs + num_exp )
target_entities.push_back( *rit );
}
if( target_entities.size() == start_sz )
{
result = MB_MULTIPLE_ENTITIES_FOUND;
target_entities.push_back( *adj_edges.begin() );
}
}
else
{
// we have no adjacent edge yet; we need to create one and also add
// them to the adjacency of the vertices
if( create_if_missing )
{
EntityHandle newEdge;
EntityHandle v[2] = { vertex_array[i], vertex_array[i + 1] };
result = thisMB->create_element( MBEDGE, v, 2, newEdge );
if( MB_SUCCESS != result ) return result;
// we also need to add explicit adjacency, so next time we do not
// create again (because we do not find the edge if it is not adjacent to the
// vertices
// if (create_adjacency_option >= 0)
//{
result = add_adjacency( v[0], newEdge );
if( MB_SUCCESS != result ) return result;
result = add_adjacency( v[1], newEdge );
if( MB_SUCCESS != result ) return result;
target_entities.push_back( newEdge );
//}
}
}
}
return result;
}
else
{
if( target_dimension == 2 )
{
result = thisMB->get_connectivity( &source_entity, 1, target_entities );
}
else
{
std::vector< EntityHandle > dum_vec;
result = thisMB->get_connectivity( &source_entity, 1, dum_vec );
if( MB_SUCCESS != result ) return result;
result = thisMB->get_adjacencies( &dum_vec[0], dum_vec.size(), 1, create_if_missing, target_entities,
Interface::UNION );
return result;
}
}
return MB_SUCCESS;
}
#if 0
// Do in-place set intersect of two *sorted* containers.
// First container is modifed. Second is not.
// First container must allow assignment through iterators (in practice,
// must be a container that does not enforce ordering, such
// as std::vector, std::list, or a c-style array)
template <typename T1, typename T2>
static inline T1 intersect( T1 set1_begin, T1 set1_end,
T2 set2_begin, T2 set2_end )
{
T1 set1_write = set1_begin;
while (set1_begin != set1_end) {
if (set2_begin == set2_end)
return set1_write;
while (*set2_begin < *set1_begin)
if (++set2_begin == set2_end)
return set1_write;
if (!(*set1_begin < *set2_begin)) {
*set1_write = *set1_begin;
++set1_write;
++set2_begin;
}
++set1_begin;
}
return set1_write;
}
ErrorCode AEntityFactory::get_up_adjacency_elements(
EntityHandle source_entity,
const unsigned int target_dimension,
std::vector<EntityHandle>& target_entities,
const bool create_if_missing,
const int option )
{
ErrorCode rval;
const std::vector<EntityHandle> *vtx_adj, *vtx2_adj;
std::vector<EntityHandle> duplicates;
// Handle ranges
const size_t in_size = target_entities.size();
const EntityType src_type = TYPE_FROM_HANDLE(source_entity);
DimensionPair target_types = CN::TypeDimensionMap[target_dimension];
const EntityHandle src_beg_handle = CREATE_HANDLE( src_type, 0 );
const EntityHandle src_end_handle = CREATE_HANDLE( src_type+1, 0 );
const EntityHandle tgt_beg_handle = CREATE_HANDLE( target_types.first, 0 );
const EntityHandle tgt_end_handle = CREATE_HANDLE( target_types.second+1, 0 );
// get vertices
assert(TYPE_FROM_HANDLE(source_entity) != MBPOLYHEDRON); // can't go up from a region
std::vector<EntityHandle> conn_storage;
const EntityHandle* conn;
int conn_len;
rval = thisMB->get_connectivity( source_entity, conn, conn_len, true, &conn_storage );
if (MB_SUCCESS != rval)
return rval;
// shouldn't be here if source entity is not an element
assert(conn_len > 1);
// create necessary entities. this only makes sense if there exists of a
// dimension greater than the target dimension.
if (create_if_missing && target_dimension < 3 && CN::Dimension(src_type) < 2) {
for (size_t i = 0; i < conn_len; ++i) {
rval = get_adjacency_ptr( conn[i], vtx_adj );
if (MB_SUCCESS != rval)
return rval;
assert(vtx_adj != NULL); // should contain at least source_entity
std::vector<EntityHandle> tmp2, tmp(*vtx_adj); // copy in case adjacency vector is changed
for (size_t j = 0; j < tmp.size(); ++j) {
if (CN::Dimension(TYPE_FROM_HANDLE(tmp[j])) <= (int)target_dimension)
continue;
if (TYPE_FROM_HANDLE(tmp[j]) == MBENTITYSET)
break;
tmp2.clear();
rval = get_down_adjacency_elements( tmp[j], target_dimension, tmp2, true, option );
if (MB_SUCCESS != rval)
return rval;
}
}
}
// get elements adjacent to first vertex
rval = get_adjacency_ptr( conn[0], vtx_adj );
if (MB_SUCCESS != rval)
return rval;
assert(vtx_adj != NULL); // should contain at least source_entity
// get elements adjacent to second vertex
rval = get_adjacency_ptr( conn[1], vtx2_adj );
if (MB_SUCCESS != rval)
return rval;
assert(vtx2_adj != NULL);
// Put intersect of all entities except source entity with
// the same type as the source entity in 'duplicates'
std::vector<EntityHandle>::const_iterator it1, it2, end1, end2;
it1 = std::lower_bound( vtx_adj->begin(), vtx_adj->end(), src_beg_handle );
it2 = std::lower_bound( vtx2_adj->begin(), vtx2_adj->end(), src_beg_handle );
end1 = std::lower_bound( it1, vtx_adj->end(), src_end_handle );
end2 = std::lower_bound( it2, vtx2_adj->end(), src_end_handle );
assert(end1 != it1); // should at least contain source entity
duplicates.resize( end1 - it1 - 1 );
std::vector<EntityHandle>::iterator ins = duplicates.begin();
for (; it1 != end1; ++it1) {
if (*it1 != source_entity) {
*ins = *it1;
++ins;
}
}
duplicates.erase( intersect( duplicates.begin(), duplicates.end(), it2, end2 ), duplicates.end() );
// Append to input list any entities of the desired target dimension
it1 = std::lower_bound( end1, vtx_adj->end(), tgt_beg_handle );
it2 = std::lower_bound( end2, vtx2_adj->end(), tgt_beg_handle );
end1 = std::lower_bound( it1, vtx_adj->end(), tgt_end_handle );
end2 = std::lower_bound( it2, vtx2_adj->end(), tgt_end_handle );
std::set_intersection( it1, end1, it2, end2, std::back_inserter( target_entities ) );
// for each additional vertex
for (int i = 2; i < conn_len; ++i) {
rval = get_adjacency_ptr( conn[i], vtx_adj );
if (MB_SUCCESS != rval)
return rval;
assert(vtx_adj != NULL); // should contain at least source_entity
it1 = std::lower_bound( vtx_adj->begin(), vtx_adj->end(), src_beg_handle );
end1 = std::lower_bound( it1, vtx_adj->end(), src_end_handle );
duplicates.erase( intersect( duplicates.begin(), duplicates.end(), it1, end1 ), duplicates.end() );
it1 = std::lower_bound( end1, vtx_adj->end(), tgt_beg_handle );
end1 = std::lower_bound( it1, vtx_adj->end(), tgt_end_handle );
target_entities.erase( intersect( target_entities.begin()+in_size, target_entities.end(),
it1, end1 ), target_entities.end() );
}
// if no duplicates, we're done
if (duplicates.empty())
return MB_SUCCESS;
// Check for explicit adjacencies. If an explicit adjacency
// connects candidate target entity to an entity equivalent
// to the source entity, then assume that source entity is *not*
// adjacent
const std::vector<EntityHandle>* adj_ptr;
// check adjacencies from duplicate entities to candidate targets
for (size_t i = 0; i < duplicates.size(); ++i) {
rval = get_adjacency_ptr( duplicates[i], adj_ptr );
if (MB_SUCCESS != rval)
return rval;
if (!adj_ptr)
continue;
for (size_t j = 0; j < adj_ptr->size(); ++j) {
std::vector<EntityHandle>::iterator k =
std::find( target_entities.begin()+in_size, target_entities.end(), (*adj_ptr)[j] );
if (k != target_entities.end())
target_entities.erase(k);
}
}
// If target dimension is 3 and source dimension is 1, also need to
// check for explicit adjacencies to intermediate faces
if (CN::Dimension(src_type) > 1 || target_dimension < 3)
return MB_SUCCESS;
// Get faces adjacent to each element and check for explict
// adjacencies from duplicate entities to faces
for (size_t i = 0; i < duplicates.size(); ++i) {
rval = get_adjacency_ptr( duplicates[i], adj_ptr );
if (MB_SUCCESS != rval)
return rval;
if (!adj_ptr)
continue;
size_t j;
for (j = 0; j < adj_ptr->size(); ++j) {
const std::vector<EntityHandle>* adj_ptr2;
rval = get_adjacency_ptr( (*adj_ptr)[j], adj_ptr2 );
if (MB_SUCCESS != rval)
return rval;
if (!adj_ptr2)
continue;
for (size_t k = 0; k < adj_ptr2->size(); ++k) {
std::vector<EntityHandle>::iterator it;
it = std::find( target_entities.begin()+in_size, target_entities.end(), (*adj_ptr2)[k] );
if (it != target_entities.end()) {
target_entities.erase(it);
j = adj_ptr->size(); // break outer loop
break;
}
}
}
}
return MB_SUCCESS;
}
#else
ErrorCode AEntityFactory::get_up_adjacency_elements( EntityHandle source_entity,
const unsigned int target_dimension,
std::vector< EntityHandle >& target_entities,
const bool create_if_missing,
const int /*create_adjacency_option = -1*/ )
{
EntityType source_type = TYPE_FROM_HANDLE( source_entity );
const EntityHandle* source_vertices = NULL;
int num_source_vertices = 0;
std::vector< EntityHandle > conn_storage;
// check to see whether there are any equivalent entities (same verts, different entity);
// do this by calling get_element with a 0 source_entity, and look for a
// MB_MULTIPLE_ENTITIES_FOUND return code
// NOTE: we only want corner vertices here, and for the code below which also uses
// source_vertices
ErrorCode result =
thisMB->get_connectivity( source_entity, source_vertices, num_source_vertices, true, &conn_storage );
if( MB_SUCCESS != result ) return result;
EntityHandle temp_entity;
result = get_element( source_vertices, num_source_vertices, source_type, temp_entity, false, 0 );
bool equiv_entities = ( result == MB_MULTIPLE_ENTITIES_FOUND ) ? true : false;
std::vector< EntityHandle > tmp_vec;
if( !equiv_entities )
{
// get elems adjacent to each node
std::vector< std::vector< EntityHandle > > elems( num_source_vertices );
int i;
for( i = 0; i < num_source_vertices; i++ )
{
// get elements
// see comment above pertaining to source_vertices; these are corner vertices only
get_zero_to_n_elements( source_vertices[i], target_dimension, elems[i], create_if_missing, 0 );
// sort this element list
std::sort( elems[i].begin(), elems[i].end() );
}
// perform an intersection between all the element lists
// see comment above pertaining to source_vertices; these are corner vertices only
for( i = 1; i < num_source_vertices; i++ )
{
tmp_vec.clear();
// intersection between first list and ith list, put result in tmp
std::set_intersection( elems[0].begin(), elems[0].end(), elems[i].begin(), elems[i].end(),
std::back_insert_iterator< std::vector< EntityHandle > >( tmp_vec ) );
// tmp has elems[0] contents and elems[0] contents has tmp's contents
// so that elems[0] always has the intersection of previous operations
elems[0].swap( tmp_vec );
}
// elems[0] contains the intersection, swap with target_entities
target_entities.insert( target_entities.end(), elems[0].begin(), elems[0].end() );
}
else if( source_type == MBPOLYGON )
{
// get adjacencies using polyhedra's connectivity vectors
// first get polyhedra neighboring vertices
result = thisMB->get_adjacencies( source_vertices, num_source_vertices, 3, false, tmp_vec );
if( MB_SUCCESS != result ) return result;
// now filter according to whether each is adjacent to the polygon
const EntityHandle* connect = NULL;
int num_connect = 0;
std::vector< EntityHandle > storage;
for( unsigned int i = 0; i < tmp_vec.size(); i++ )
{
result = thisMB->get_connectivity( tmp_vec[i], connect, num_connect, false, &storage );
if( MB_SUCCESS != result ) return result;
if( std::find( connect, connect + num_connect, source_entity ) != connect + num_connect )
target_entities.push_back( tmp_vec[i] );
}
}
else
{
// else get up-adjacencies directly; code copied from get_zero_to_n_elements
// get the adjacency vector
AdjacencyVector* adj_vec = NULL;
result = get_adjacencies( source_entity, adj_vec );
if( result != MB_SUCCESS )
return result;
else if( adj_vec == NULL )
return MB_SUCCESS;
DimensionPair dim_pair_dp1 = CN::TypeDimensionMap[CN::Dimension( source_type ) + 1],
dim_pair_td = CN::TypeDimensionMap[target_dimension];
int dum;
Range tmp_ents, target_ents;
// get iterators for start handle of source_dim+1 and target_dim, and end handle
// of target_dim
AdjacencyVector::iterator start_ent_dp1 =
std::lower_bound( adj_vec->begin(), adj_vec->end(),
CREATE_HANDLE( dim_pair_dp1.first, MB_START_ID, dum ) ),
start_ent_td =
std::lower_bound( adj_vec->begin(), adj_vec->end(),
CREATE_HANDLE( dim_pair_td.first, MB_START_ID, dum ) ),
end_ent_td = std::lower_bound( adj_vec->begin(), adj_vec->end(),
CREATE_HANDLE( dim_pair_td.second, MB_END_ID, dum ) );
// get the adjacencies for source_dim+1 to target_dim-1, and the adjacencies from
// those to target_dim
std::copy( start_ent_dp1, start_ent_td, range_inserter( tmp_ents ) );
result = thisMB->get_adjacencies( tmp_ents, target_dimension, false, target_ents, Interface::UNION );
if( MB_SUCCESS != result ) return result;
// now copy the explicit adjacencies to target_dimension
std::copy( start_ent_td, end_ent_td, range_inserter( target_ents ) );
// now insert the whole thing into the argument vector
#ifdef MOAB_NO_VECTOR_TEMPLATE_INSERT
std::copy( target_ents.begin(), target_ents.end(), std::back_inserter( target_entities ) );
#else
target_entities.insert( target_entities.end(), target_ents.begin(), target_ents.end() );
#endif
}
return result;
}
#endif
ErrorCode AEntityFactory::notify_change_connectivity( EntityHandle entity,
const EntityHandle* old_array,
const EntityHandle* new_array,
int number_verts )
{
EntityType source_type = TYPE_FROM_HANDLE( entity );
if( source_type == MBPOLYHEDRON ) return MB_NOT_IMPLEMENTED;
// find out which ones to add and which to remove
std::vector< EntityHandle > old_verts, new_verts;
int i;
for( i = 0; i < number_verts; i++ )
{
if( old_array[i] != new_array[i] )
{
old_verts.push_back( old_array[i] );
new_verts.push_back( new_array[i] );
}
}
ErrorCode result;
if( mVertElemAdj == true )
{
// update the vertex-entity adjacencies
std::vector< EntityHandle >::iterator adj_iter;
for( adj_iter = old_verts.begin(); adj_iter != old_verts.end(); ++adj_iter )
{
if( std::find( new_verts.begin(), new_verts.end(), *adj_iter ) == new_verts.end() )
{
result = remove_adjacency( *adj_iter, entity );
if( MB_SUCCESS != result ) return result;
}
}
for( adj_iter = new_verts.begin(); adj_iter != new_verts.end(); ++adj_iter )
{
if( std::find( old_verts.begin(), old_verts.end(), *adj_iter ) == old_verts.end() )
{
result = add_adjacency( *adj_iter, entity );
if( MB_SUCCESS != result ) return result;
}
}
}
return MB_SUCCESS;
}
//! return true if 2 entities are explicitly adjacent
bool AEntityFactory::explicitly_adjacent( const EntityHandle ent1, const EntityHandle ent2 )
{
const EntityHandle* explicit_adjs;
int num_exp;
get_adjacencies( ent1, explicit_adjs, num_exp );
if( std::find( explicit_adjs, explicit_adjs + num_exp, ent2 ) != explicit_adjs + num_exp )
return true;
else
return false;
}
ErrorCode AEntityFactory::merge_adjust_adjacencies( EntityHandle entity_to_keep, EntityHandle entity_to_remove )
{
int ent_dim = CN::Dimension( TYPE_FROM_HANDLE( entity_to_keep ) );
ErrorCode result;
// check for newly-formed equivalent entities, and create explicit adjacencies
// to distinguish them; this must be done before connectivity of higher-dimensional
// entities is changed below, and only needs to be checked if merging vertices
if( ent_dim == 0 )
{
result = check_equiv_entities( entity_to_keep, entity_to_remove );
if( MB_SUCCESS != result ) return result;
}
// check adjacencies TO removed entity
for( int dim = 1; dim < ent_dim; dim++ )
{
Range adjs;
result = thisMB->get_adjacencies( &entity_to_remove, 1, dim, false, adjs );
if( result != MB_SUCCESS ) return result;
// for any explicit ones, make them adjacent to keeper
for( Range::iterator rit = adjs.begin(); rit != adjs.end(); ++rit )
{
if( this->explicitly_adjacent( *rit, entity_to_remove ) )
{
result = this->add_adjacency( *rit, entity_to_keep );
if( result != MB_SUCCESS ) return result;
}
}
}
// check adjacencies FROM removed entity
std::vector< EntityHandle > conn, adjs;
result = this->get_adjacencies( entity_to_remove, adjs );
if( result != MB_SUCCESS ) return result;
// set them all, and if to_entity is a set, add to that one too
for( unsigned int i = 0; i < adjs.size(); i++ )
{
if( TYPE_FROM_HANDLE( adjs[i] ) == MBENTITYSET )
{
// result = this->add_adjacency(entity_to_keep, adjs[i]);
// if(result != MB_SUCCESS) return result;
// result = thisMB->add_entities(adjs[i], &entity_to_keep, 1);
// if(result != MB_SUCCESS) return result;
result = thisMB->replace_entities( adjs[i], &entity_to_remove, &entity_to_keep, 1 );
if( MB_SUCCESS != result ) return result;
}
else if( ent_dim == 0 )
{
conn.clear();
result = thisMB->get_connectivity( &adjs[i], 1, conn );
if( result == MB_SUCCESS )
{
std::replace( conn.begin(), conn.end(), entity_to_remove, entity_to_keep );
result = thisMB->set_connectivity( adjs[i], &conn[0], conn.size() );
if( MB_SUCCESS != result ) return result;
}
else
return result;
}
else
{
result = this->add_adjacency( entity_to_keep, adjs[i] );
if( result != MB_SUCCESS ) return result;
}
}
return MB_SUCCESS;
}
// check for equivalent entities that may be formed when merging two entities, and
// create explicit adjacencies accordingly
ErrorCode AEntityFactory::check_equiv_entities( EntityHandle entity_to_keep, EntityHandle entity_to_remove )
{
if( thisMB->dimension_from_handle( entity_to_keep ) > 0 ) return MB_SUCCESS;
// get all the adjacencies for both entities for all dimensions > 0
Range adjs_keep, adjs_remove;
ErrorCode result;
for( int dim = 1; dim <= 3; dim++ )
{
result = thisMB->get_adjacencies( &entity_to_keep, 1, dim, false, adjs_keep, Interface::UNION );
if( MB_SUCCESS != result ) return result;
result = thisMB->get_adjacencies( &entity_to_remove, 1, dim, false, adjs_remove, Interface::UNION );
if( MB_SUCCESS != result ) return result;
}
// now look for equiv entities which will be formed
// algorithm:
// for each entity adjacent to removed entity:
EntityHandle two_ents[2];
for( Range::iterator rit_rm = adjs_remove.begin(); rit_rm != adjs_remove.end(); ++rit_rm )
{
two_ents[0] = *rit_rm;
// - for each entity of same dimension adjacent to kept entity:
for( Range::iterator rit_kp = adjs_keep.begin(); rit_kp != adjs_keep.end(); ++rit_kp )
{
if( TYPE_FROM_HANDLE( *rit_kp ) != TYPE_FROM_HANDLE( *rit_rm ) ) continue;
Range all_verts;
two_ents[1] = *rit_kp;
// . get union of adjacent vertices to two entities
result = thisMB->get_adjacencies( two_ents, 2, 0, false, all_verts, Interface::UNION );
if( MB_SUCCESS != result ) return result;
assert( all_verts.find( entity_to_keep ) != all_verts.end() &&
all_verts.find( entity_to_remove ) != all_verts.end() );
// . if # vertices != number of corner vertices + 1, continue
if( CN::VerticesPerEntity( TYPE_FROM_HANDLE( *rit_rm ) ) + 1 != (int)all_verts.size() ) continue;
// . for the two entities adjacent to kept & removed entity:
result = create_explicit_adjs( *rit_rm );
if( MB_SUCCESS != result ) return result;
result = create_explicit_adjs( *rit_kp );
if( MB_SUCCESS != result ) return result;
// . (end for)
}
// - (end for)
}
return MB_SUCCESS;
}
ErrorCode AEntityFactory::create_explicit_adjs( EntityHandle this_ent )
{
// - get adjacent entities of next higher dimension
Range all_adjs;
ErrorCode result;
result = thisMB->get_adjacencies( &this_ent, 1, thisMB->dimension_from_handle( this_ent ) + 1, false, all_adjs,
Interface::UNION );
if( MB_SUCCESS != result ) return result;
// - create explicit adjacency to these entities
for( Range::iterator rit = all_adjs.begin(); rit != all_adjs.end(); ++rit )
{
result = add_adjacency( this_ent, *rit );
if( MB_SUCCESS != result ) return result;
}
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_adjacency_ptr( EntityHandle entity, std::vector< EntityHandle >*& ptr )
{
ptr = 0;
EntitySequence* seq;
ErrorCode rval = thisMB->sequence_manager()->find( entity, seq );
if( MB_SUCCESS != rval || !seq->data()->get_adjacency_data() ) return rval;
ptr = seq->data()->get_adjacency_data()[entity - seq->data()->start_handle()];
return MB_SUCCESS;
}
ErrorCode AEntityFactory::get_adjacency_ptr( EntityHandle entity, const std::vector< EntityHandle >*& ptr ) const
{
ptr = 0;
EntitySequence* seq;
ErrorCode rval = thisMB->sequence_manager()->find( entity, seq );
if( MB_SUCCESS != rval || !seq->data()->get_adjacency_data() ) return rval;
ptr = seq->data()->get_adjacency_data()[entity - seq->data()->start_handle()];
return MB_SUCCESS;
}
ErrorCode AEntityFactory::set_adjacency_ptr( EntityHandle entity, std::vector< EntityHandle >* ptr )
{
EntitySequence* seq;
ErrorCode rval = thisMB->sequence_manager()->find( entity, seq );
if( MB_SUCCESS != rval ) return rval;
if( !seq->data()->get_adjacency_data() && !seq->data()->allocate_adjacency_data() )
return MB_MEMORY_ALLOCATION_FAILED;
const EntityHandle index = entity - seq->data()->start_handle();
std::vector< EntityHandle >*& ref = seq->data()->get_adjacency_data()[index];
delete ref;
ref = ptr;
return MB_SUCCESS;
}
void AEntityFactory::get_memory_use( unsigned long long& entity_total, unsigned long long& memory_total )
{
entity_total = memory_total = 0;
// iterate through each element type
SequenceData* prev_data = 0;
for( EntityType t = MBVERTEX; t != MBENTITYSET; t++ )
{
TypeSequenceManager::iterator i;
TypeSequenceManager& seqman = thisMB->sequence_manager()->entity_map( t );
for( i = seqman.begin(); i != seqman.end(); ++i )
{
if( !( *i )->data()->get_adjacency_data() ) continue;
if( prev_data != ( *i )->data() )
{
prev_data = ( *i )->data();
memory_total += prev_data->size() * sizeof( AdjacencyVector* );
}
const AdjacencyVector* vec;
for( EntityHandle h = ( *i )->start_handle(); h <= ( *i )->end_handle(); ++h )
{
get_adjacency_ptr( h, vec );
if( vec ) entity_total += vec->capacity() * sizeof( EntityHandle ) + sizeof( AdjacencyVector );
}
}
}
memory_total += sizeof( *this ) + entity_total;
}
ErrorCode AEntityFactory::get_memory_use( const Range& ents_in,
unsigned long long& min_per_ent,
unsigned long long& amortized )
{
min_per_ent = amortized = 0;
SequenceData* prev_data = 0;
RangeSeqIntersectIter iter( thisMB->sequence_manager() );
ErrorCode rval = iter.init( ents_in.begin(), ents_in.end() );
if( MB_SUCCESS != rval ) return rval;
do
{
AdjacencyVector** array = iter.get_sequence()->data()->get_adjacency_data();
if( !array ) continue;
EntityID count = iter.get_end_handle() - iter.get_start_handle() + 1;
EntityID data_occ = thisMB->sequence_manager()
->entity_map( iter.get_sequence()->type() )
.get_occupied_size( iter.get_sequence()->data() );
if( iter.get_sequence()->data() != prev_data )
{
prev_data = iter.get_sequence()->data();
amortized += sizeof( AdjacencyVector* ) * iter.get_sequence()->data()->size() * count / data_occ;
}
array += iter.get_start_handle() - iter.get_sequence()->data()->start_handle();
for( EntityID i = 0; i < count; ++i )
{
if( array[i] ) min_per_ent += sizeof( EntityHandle ) * array[i]->capacity() + sizeof( AdjacencyVector );
}
} while( MB_SUCCESS == ( rval = iter.step() ) );
amortized += min_per_ent;
return ( rval == MB_FAILURE ) ? MB_SUCCESS : rval;
}
/*!
calling code is notifying this that an entity is going to be deleted
from the database
*/
ErrorCode AEntityFactory::notify_delete_entity( EntityHandle entity )
{
if( TYPE_FROM_HANDLE( entity ) == MBVERTEX )
{
std::vector< EntityHandle > adj_entities;
for( int dim = 1; dim < 4; ++dim )
{
ErrorCode rval = get_adjacencies( entity, dim, false, adj_entities );
if( rval != MB_SUCCESS && rval != MB_ENTITY_NOT_FOUND ) return rval;
if( !adj_entities.empty() ) return MB_FAILURE;
}
}
// remove any references to this entity from other entities
return remove_all_adjacencies( entity, true );
}
} // namespace moab
|