MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2010 Sandia National Laboratories. Developed at the 00005 University of Wisconsin--Madison under SNL contract number 00006 624796. The U.S. Government and the University of Wisconsin 00007 retain certain rights to this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2010) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 /** \file TMetric.hpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #ifndef MSQ_T_METRIC_HPP 00033 #define MSQ_T_METRIC_HPP 00034 00035 #include "Mesquite.hpp" 00036 #include <string> 00037 00038 namespace MBMesquite 00039 { 00040 00041 class MsqError; 00042 template < unsigned R, unsigned C > 00043 class MsqMatrix; 00044 00045 class TMetric 00046 { 00047 public: 00048 MESQUITE_EXPORT virtual ~TMetric(); 00049 00050 MESQUITE_EXPORT virtual std::string get_name() const = 0; 00051 00052 /**\brief Evaluate \f$\mu(T)\f$ 00053 * 00054 *\param T 2x2 relative measure matrix (typically A W^-1) 00055 *\param result Output: value of function 00056 *\return false if function cannot be evaluated for given T 00057 * (e.g. division by zero, etc.), true otherwise. 00058 */ 00059 MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 2, 2 >& T, double& result, MsqError& err ); 00060 00061 /**\brief Evaluate \f$\mu(T)\f$ 00062 * 00063 *\param T 3x3 relative measure matrix (typically A W^-1) 00064 *\param result Output: value of function 00065 *\return false if function cannot be evaluated for given T 00066 * (e.g. division by zero, etc.), true otherwise. 00067 */ 00068 MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 3, 3 >& T, double& result, MsqError& err ); 00069 00070 /**\brief Gradient of \f$\mu(T)\f$ with respect to components of T 00071 * 00072 *\param T 2x2 relative measure matrix (typically A W^-1) 00073 *\param result Output: value of function 00074 *\param deriv_wrt_T Output: partial deriviatve of \f$\mu\f$ wrt each term of T, 00075 * evaluated at passed T. 00076 * \f[\left[\begin{array}{cc} 00077 * \frac{\partial\mu}{\partial T_{0,0}} & 00078 * \frac{\partial\mu}{\partial T_{0,1}} \\ 00079 * \frac{\partial\mu}{\partial T_{1,0}} & 00080 * \frac{\partial\mu}{\partial T_{1,1}} \\ 00081 * \end{array}\right]\f] 00082 *\return false if function cannot be evaluated for given T 00083 * (e.g. division by zero, etc.), true otherwise. 00084 */ 00085 MESQUITE_EXPORT virtual bool evaluate_with_grad( const MsqMatrix< 2, 2 >& T, 00086 double& result, 00087 MsqMatrix< 2, 2 >& deriv_wrt_T, 00088 MsqError& err ); 00089 00090 /**\brief Gradient of \f$\mu(T)\f$ with respect to components of T 00091 * 00092 *\param T 3x3 relative measure matrix (typically A W^-1) 00093 *\param result Output: value of function 00094 *\param deriv_wrt_T Output: partial deriviatve of \f$\mu\f$ wrt each term of T, 00095 * evaluated at passed T. 00096 * \f[\left[\begin{array}{ccc} 00097 * \frac{\partial\mu}{\partial T_{0,0}} & 00098 * \frac{\partial\mu}{\partial T_{0,1}} & 00099 * \frac{\partial\mu}{\partial T_{0,2}} \\ 00100 * \frac{\partial\mu}{\partial T_{1,0}} & 00101 * \frac{\partial\mu}{\partial T_{1,1}} & 00102 * \frac{\partial\mu}{\partial T_{1,2}} \\ 00103 * \frac{\partial\mu}{\partial T_{2,0}} & 00104 * \frac{\partial\mu}{\partial T_{2,1}} & 00105 * \frac{\partial\mu}{\partial T_{2,2}} 00106 * \end{array}\right]\f] 00107 *\return false if function cannot be evaluated for given T 00108 * (e.g. division by zero, etc.), true otherwise. 00109 */ 00110 MESQUITE_EXPORT virtual bool evaluate_with_grad( const MsqMatrix< 3, 3 >& T, 00111 double& result, 00112 MsqMatrix< 3, 3 >& deriv_wrt_T, 00113 MsqError& err ); 00114 00115 /**\brief Hessian of \f$\mu(T)\f$ with respect to components of T 00116 * 00117 *\param T 3x3 relative measure matrix (typically A W^-1) 00118 *\param result Output: value of function 00119 *\param deriv_wrt_T Output: partial deriviatve of \f$\mu\f$ wrt each term of T, 00120 * evaluated at passed T. 00121 *\param second_wrt_T Output: 9x9 matrix of second partial deriviatve of \f$\mu\f$ wrt 00122 * each term of T, in row-major order. The symmetric 00123 * matrix is decomposed into 3x3 blocks and only the upper diagonal 00124 * blocks, in row-major order, are returned. 00125 * \f[\left[\begin{array}{cc|cc} 00126 * \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & 00127 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & 00128 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & 00129 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ 00130 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & 00131 * \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & 00132 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & 00133 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ 00134 * \hline & & 00135 * \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & 00136 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ 00137 * & & 00138 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & 00139 * \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ 00140 * \end{array}\right]\f] 00141 * 00142 *\return false if function cannot be evaluated for given T 00143 * (e.g. division by zero, etc.), true otherwise. 00144 */ 00145 MESQUITE_EXPORT virtual bool evaluate_with_hess( const MsqMatrix< 2, 2 >& T, 00146 double& result, 00147 MsqMatrix< 2, 2 >& deriv_wrt_T, 00148 MsqMatrix< 2, 2 > second_wrt_T[3], 00149 MsqError& err ); 00150 /**\brief Hessian of \f$\mu(T)\f$ with respect to components of T 00151 * 00152 *\param T 3x3 relative measure matrix (typically A W^-1) 00153 *\param result Output: value of function 00154 *\param deriv_wrt_T Output: partial deriviatve of \f$\mu\f$ wrt each term of T, 00155 * evaluated at passed T. 00156 *\param second_wrt_T Output: 9x9 matrix of second partial deriviatve of \f$\mu\f$ wrt 00157 * each term of T, in row-major order. The symmetric 00158 * matrix is decomposed into 3x3 blocks and only the upper diagonal 00159 * blocks, in row-major order, are returned. 00160 * \f[\left[\begin{array}{ccc|ccc|ccc} 00161 * \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & 00162 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & 00163 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & 00164 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & 00165 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & 00166 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & 00167 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & 00168 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & 00169 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ 00170 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & 00171 * \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & 00172 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & 00173 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & 00174 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & 00175 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & 00176 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & 00177 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & 00178 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ 00179 * \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & 00180 * \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & 00181 * \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & 00182 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & 00183 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & 00184 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & 00185 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & 00186 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & 00187 * \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ 00188 * \hline & & & 00189 * \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & 00190 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & 00191 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & 00192 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & 00193 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & 00194 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ 00195 * & & & 00196 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & 00197 * \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & 00198 * \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & 00199 * \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & 00200 * \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & 00201 * \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ 00202 * & & & 00203 * \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & 00204 * \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & 00205 * \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & 00206 * \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & 00207 * \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & 00208 * \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ 00209 * \hline & & & & & & 00210 * \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & 00211 * \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & 00212 * \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ 00213 * & & & & & & 00214 * \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & 00215 * \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & 00216 * \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ 00217 * & & & & & & 00218 * \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & 00219 * \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & 00220 * \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ 00221 * \end{array}\right]\f] 00222 *\return false if function cannot be evaluated for given T 00223 * (e.g. division by zero, etc.), true otherwise. 00224 */ 00225 MESQUITE_EXPORT virtual bool evaluate_with_hess( const MsqMatrix< 3, 3 >& T, 00226 double& result, 00227 MsqMatrix< 3, 3 >& deriv_wrt_T, 00228 MsqMatrix< 3, 3 > second_wrt_T[6], 00229 MsqError& err ); 00230 00231 static inline bool invalid_determinant( double d ) 00232 { 00233 return d < 1e-12; 00234 } 00235 }; 00236 00237 class TMetric2D : public TMetric 00238 { 00239 public: 00240 MESQUITE_EXPORT virtual ~TMetric2D(); 00241 00242 /**\brief Evaluate \f$\mu(T)\f$ 00243 * 00244 * This method always returns an error for 2D-only metrics 00245 */ 00246 MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 3, 3 >& T, double& result, MsqError& err ); 00247 }; 00248 00249 class TMetric3D : public TMetric 00250 { 00251 public: 00252 MESQUITE_EXPORT virtual ~TMetric3D(); 00253 00254 /**\brief Evaluate \f$\mu(T)\f$ 00255 * 00256 * This method always returns an error for 3D-only metrics 00257 */ 00258 MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 2, 2 >& T, double& result, MsqError& err ); 00259 }; 00260 00261 } // namespace MBMesquite 00262 00263 #endif