MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TMetric.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TMetric () |
virtual MESQUITE_EXPORT std::string | get_name () const =0 |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
Static Public Member Functions | |
static bool | invalid_determinant (double d) |
Definition at line 45 of file TMetric.hpp.
MBMesquite::TMetric::~TMetric | ( | ) | [virtual] |
Definition at line 203 of file TMetric.cpp.
{}
bool MBMesquite::TMetric::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented in MBMesquite::TMetric3D, HessTestMetricRel_2, HessTestMetricRel, MBMesquite::TMetricBarrier3D, MBMesquite::TMetricNonBarrier3D, GradTestMetricRel, MBMesquite::TUntangleMu, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TTau, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::InvTransBarrier, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShape2DNB2, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSize2DB2, MBMesquite::TShapeSize2DNB1, MBMesquite::TShapeSize2DNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, and MBMesquite::TSizeNB1.
Definition at line 205 of file TMetric.cpp.
Referenced by MBMesquite::do_finite_difference(), MBMesquite::do_numerical_gradient(), MBMesquite::TPower2::eval(), MBMesquite::TSum::eval(), MBMesquite::TUntangleMu::eval(), TMetricTest< Metric, DIM >::eval(), MBMesquite::InvTransBarrier::evaluate(), MBMesquite::TScale::evaluate(), MBMesquite::TOffset::evaluate(), MBMesquite::TMixed::evaluate(), MBMesquite::AffineMapMetric::evaluate(), and MBMesquite::TQualityMetric::evaluate_internal().
{ return false; }
bool MBMesquite::TMetric::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented in MBMesquite::TMetric2D, HessTestMetricRel_2, HessTestMetricRel, GradTestMetricRel, MBMesquite::TUntangleMu, MBMesquite::TMetricBarrier2D, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TMetricNonBarrier2D, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, MBMesquite::TSizeNB1, MBMesquite::TShapeSize3DNB1, MBMesquite::TShapeSize3DB4, MBMesquite::TTau, MBMesquite::TShape3DB2, MBMesquite::InvTransBarrier, and MBMesquite::TShapeSize3DB2.
Definition at line 210 of file TMetric.cpp.
{ return false; }
bool MBMesquite::TMetric::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented in HessTestMetricRel_2, HessTestMetricRel, MBMesquite::TUntangleMu, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShape2DNB2, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSize2DB2, MBMesquite::TShapeSize2DNB1, MBMesquite::TShapeSize2DNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, and MBMesquite::TSizeNB1.
Definition at line 215 of file TMetric.cpp.
References MBMesquite::do_numerical_gradient().
Referenced by MBMesquite::do_numerical_hessian(), MBMesquite::TScale::evaluate_with_grad(), MBMesquite::TOffset::evaluate_with_grad(), MBMesquite::TMixed::evaluate_with_grad(), MBMesquite::TQualityMetric::evaluate_with_gradient(), MBMesquite::TPower2::grad(), MBMesquite::TSum::grad(), MBMesquite::TUntangleMu::grad(), TMetricTest< Metric, DIM >::grad(), TMetricTest< Metric, DIM >::num_grad(), TMetricTest< Metric, DIM >::test_numerical_gradient_2D(), and TMetricTest< Metric, DIM >::test_numerical_gradient_3D().
{ return do_numerical_gradient( this, T, result, wrt_T, err ); }
bool MBMesquite::TMetric::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented in HessTestMetricRel_2, HessTestMetricRel, MBMesquite::TUntangleMu, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, MBMesquite::TSizeNB1, MBMesquite::TShapeSize3DNB1, MBMesquite::TShapeSize3DB4, MBMesquite::TShape3DB2, and MBMesquite::TShapeSize3DB2.
Definition at line 220 of file TMetric.cpp.
References MBMesquite::do_numerical_gradient().
{ return do_numerical_gradient( this, T, result, wrt_T, err ); }
bool MBMesquite::TMetric::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented in HessTestMetricRel_2, MBMesquite::TUntangleMu, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShape2DNB2, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSize2DB2, MBMesquite::TShapeSize2DNB1, MBMesquite::TShapeSize2DNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, and MBMesquite::TSizeNB1.
Definition at line 225 of file TMetric.cpp.
References MBMesquite::do_numerical_hessian().
Referenced by MBMesquite::TOffset::evaluate_with_hess(), MBMesquite::TScale::evaluate_with_hess(), MBMesquite::TMixed::evaluate_with_hess(), MBMesquite::TQualityMetric::evaluate_with_Hessian(), MBMesquite::TQualityMetric::evaluate_with_Hessian_diagonal(), MBMesquite::TSum::hess(), MBMesquite::TPower2::hess(), MBMesquite::TUntangleMu::hess(), TMetricTest< Metric, DIM >::hess(), TMetricTest< Metric, DIM >::num_hess(), TMetricTest< Metric, DIM >::test_numerical_hessian_2D(), and TMetricTest< Metric, DIM >::test_numerical_hessian_3D().
{ return do_numerical_hessian( this, T, result, deriv_wrt_T, hess_wrt_T, err ); }
bool MBMesquite::TMetric::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented in HessTestMetricRel_2, MBMesquite::TUntangleMu, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TUntangleBeta, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeOrientB2, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShapeOrientB1, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, MBMesquite::TSizeNB1, MBMesquite::TShapeSize3DNB1, MBMesquite::TShapeSize3DB4, MBMesquite::TShape3DB2, and MBMesquite::TShapeSize3DB2.
Definition at line 234 of file TMetric.cpp.
References MBMesquite::do_numerical_hessian().
{ return do_numerical_hessian( this, T, result, deriv_wrt_T, hess_wrt_T, err ); }
virtual MESQUITE_EXPORT std::string MBMesquite::TMetric::get_name | ( | ) | const [pure virtual] |
Implemented in HessTestMetricRel_2, HessTestMetricRel, MBMesquite::TUntangleMu, GradTestMetricRel, MBMesquite::TMixed, MBMesquite::TUntangle1, MBMesquite::TMetricBarrier, MBMesquite::TUntangleBeta, MBMesquite::TShapeSize3DNB1, MBMesquite::TShapeSize3DB4, MBMesquite::TOffset, MBMesquite::TScale, MBMesquite::TShape3DB2, MBMesquite::TMetricNonBarrier, MBMesquite::TPower2, MBMesquite::TSum, MBMesquite::TShapeSizeNB3, MBMesquite::TTau, MBMesquite::TShapeB1, MBMesquite::TShapeNB1, MBMesquite::TShapeSizeOrientB2, MBMesquite::InvTransBarrier, MBMesquite::TInverseMeanRatio, MBMesquite::TShapeOrientB2, MBMesquite::TShapeSizeB3, MBMesquite::TSquared, MBMesquite::TShape2DNB2, MBMesquite::TShapeOrientNB1, MBMesquite::TShapeOrientNB2, MBMesquite::TShapeSize2DB2, MBMesquite::TShapeSize2DNB1, MBMesquite::TShapeSize2DNB2, MBMesquite::TShapeSizeB1, MBMesquite::TShapeSizeOrientB1, MBMesquite::TShapeSizeOrientNB1, MBMesquite::TSizeB1, MBMesquite::TSizeNB1, MBMesquite::TShapeOrientB1, and MBMesquite::TShapeSize3DB2.
Referenced by MBMesquite::TPower2::get_name(), MBMesquite::TSum::get_name(), MBMesquite::TOffset::get_name(), MBMesquite::TScale::get_name(), MBMesquite::TMixed::get_name(), MBMesquite::AffineMapMetric::get_name(), MBMesquite::TUntangleMu::get_name(), and MBMesquite::TQualityMetric::get_name().
static bool MBMesquite::TMetric::invalid_determinant | ( | double | d | ) | [inline, static] |
Reimplemented in MBMesquite::TMetricBarrier, and MBMesquite::TMetricNonBarrier.
Definition at line 231 of file TMetric.hpp.
Referenced by MBMesquite::TShapeOrientB1::evaluate(), MBMesquite::TSizeB1::evaluate(), MBMesquite::TShapeSizeOrientB1::evaluate(), MBMesquite::TShapeOrientB2::evaluate(), MBMesquite::TShapeSizeOrientB2::evaluate(), MBMesquite::TShapeOrientB1::evaluate_with_grad(), MBMesquite::TShapeSizeOrientB1::evaluate_with_grad(), MBMesquite::TSizeB1::evaluate_with_grad(), MBMesquite::TShapeOrientB2::evaluate_with_grad(), MBMesquite::TSizeB1::evaluate_with_hess(), MBMesquite::TShapeSizeOrientB1::evaluate_with_hess(), MBMesquite::TShapeOrientB1::evaluate_with_hess(), and MBMesquite::TShapeOrientB2::evaluate_with_hess().
{
return d < 1e-12;
}