MOAB: Mesh Oriented datABase
(version 5.4.1)
|
Metric sensitive to shape. More...
#include <TShapeB1.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT | ~TShapeB1 () |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
Metric sensitive to shape.
For 2D: \( \frac{ |T|^2 }{ 2 det(T) } - 1 \)
For 3D: \( \frac{ |T|^3 }{ 3 \sqrt{3} det(T) } - 1 \)
Definition at line 47 of file TShapeB1.hpp.
MBMesquite::TShapeB1::~TShapeB1 | ( | ) | [virtual] |
Definition at line 46 of file TShapeB1.cpp.
{}
bool MBMesquite::TShapeB1::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 48 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, and MBMesquite::sqr_Frobenius().
{ const double d = det( T ); if( invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = 0.5 * sqr_Frobenius( T ) / d - 1; return true; }
bool MBMesquite::TShapeB1::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 121 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, and MBMesquite::MSQ_SQRT_THREE.
{ double f = Frobenius( T ); double d = det( T ); double den = 3 * MSQ_SQRT_THREE * d; if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = ( f * f * f ) / den - 1.0; return true; }
bool MBMesquite::TShapeB1::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 61 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } double inv_d = 1.0 / d; result = 0.5 * sqr_Frobenius( T ) * inv_d; deriv_wrt_T = T; deriv_wrt_T -= result * transpose_adj( T ); deriv_wrt_T *= inv_d; result -= 1.0; return true; }
bool MBMesquite::TShapeB1::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 136 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_THREE, T, and MBMesquite::transpose_adj().
{ double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } double norm = Frobenius( T ); double den = 1.0 / ( 3 * MSQ_SQRT_THREE * d ); double norm_cube = norm * norm * norm; result = norm_cube * den - 1.0; wrt_T = T; wrt_T *= 3 * norm * den; wrt_T -= norm_cube * den / d * transpose_adj( T ); return true; }
bool MBMesquite::TShapeB1::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
\( \frac{\partial^2 \mu}{\partial T^2} = \frac{1}{\tau} I_4 - \frac{1}{\tau^2} \left( T \otimes \frac{\partial \tau}{\partial T} + \frac{\partial \tau}{\partial T} \otimes T \right) + \frac{|T|^2}{\tau^3} \left( \frac{\partial \tau}{\partial T} \otimes \frac{\partial \tau}{\partial T} \right) - \frac{|T|^2}{2 \tau^3} \frac{\partial^2 \tau}{\partial T^2} \)
Reimplemented from MBMesquite::TMetric.
Definition at line 91 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_outer_product(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } double inv_d = 1.0 / d; double f1 = sqr_Frobenius( T ) * inv_d; result = 0.5 * f1; const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); deriv_wrt_T = T; deriv_wrt_T -= result * adjt; deriv_wrt_T *= inv_d; set_scaled_outer_product( second_wrt_T, f1 * inv_d * inv_d, adjt ); pluseq_scaled_sum_outer_product( second_wrt_T, -inv_d * inv_d, T, adjt ); pluseq_scaled_I( second_wrt_T, inv_d ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -result * inv_d ); result -= 1.0; return true; }
bool MBMesquite::TShapeB1::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 155 of file TShapeB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_THREE, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_outer_product(), T, and MBMesquite::transpose_adj().
{ double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } double id = 1.0 / d; double norm = Frobenius( T ); double den = 1.0 / ( 3 * MSQ_SQRT_THREE * d ); double norm_cube = norm * norm * norm; result = norm_cube * den - 1.0; MsqMatrix< 3, 3 > adjt = transpose_adj( T ); deriv_wrt_T = T; deriv_wrt_T *= 3 * norm * den; deriv_wrt_T -= norm_cube * den * id * transpose_adj( T ); set_scaled_outer_product( second_wrt_T, 3 * den / norm, T ); pluseq_scaled_I( second_wrt_T, 3 * norm * den ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -den * norm_cube * id, T ); pluseq_scaled_outer_product( second_wrt_T, 2 * den * norm_cube * id * id, adjt ); pluseq_scaled_sum_outer_product( second_wrt_T, -3 * norm * den * id, T, adjt ); return true; }
std::string MBMesquite::TShapeB1::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 41 of file TShapeB1.cpp.
{ return "TShapeB1"; }