MOAB: Mesh Oriented datABase
(version 5.4.1)
|
3.3.8: 1/9 ^2(T) - 1, Kappa(T) = |T||T|^-1 = |T||adj(T)/ More...
#include <TShape3DB2.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TShape3DB2 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
3.3.8: 1/9 ^2(T) - 1, Kappa(T) = |T||T|^-1 = |T||adj(T)/
A target metric for volume elements that optimizes element shape
Definition at line 47 of file TShape3DB2.hpp.
MBMesquite::TShape3DB2::~TShape3DB2 | ( | ) | [virtual] |
Definition at line 41 of file TShape3DB2.cpp.
{}
bool MBMesquite::TShape3DB2::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 49 of file TShape3DB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, and MBMesquite::sqr_Frobenius().
{ double f = sqr_Frobenius( T ); double g = sqr_Frobenius( adj( T ) ); double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = ( f * g ) / ( 9 * d * d ) - 1; return true; }
bool MBMesquite::TShape3DB2::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 63 of file TShape3DB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ double f = sqr_Frobenius( T ); double g = sqr_Frobenius( adj( T ) ); double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = ( f * g ) / ( 9 * d * d ) - 1; wrt_T = T; wrt_T *= ( g + f * f ); wrt_T -= f * ( T * transpose( T ) * T ); wrt_T -= f * g / d * transpose_adj( T ); wrt_T *= 2 / ( 9 * d * d ); return true; }
bool MBMesquite::TShape3DB2::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 87 of file TShape3DB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_2nd_deriv_norm_sqr_adj(), MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ double f = sqr_Frobenius( T ); double g = sqr_Frobenius( adj( T ) ); double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const double den = 1.0 / ( 9 * d * d ); result = f * g * den - 1; MsqMatrix< 3, 3 > dg = 2 * ( f * T - T * transpose( T ) * T ); MsqMatrix< 3, 3 > df = 2 * T; MsqMatrix< 3, 3 > dtau = transpose_adj( T ); wrt_T = g * df + f * dg - 2 * f * g / d * transpose_adj( T ); wrt_T *= den; set_scaled_2nd_deriv_norm_sqr_adj( second, den * f, T ); pluseq_scaled_I( second, 2 * den * g ); pluseq_scaled_sum_outer_product( second, den, dg, df ); pluseq_scaled_sum_outer_product( second, -2 * den * g / d, df, dtau ); pluseq_scaled_sum_outer_product( second, -2 * den * f / d, dg, dtau ); pluseq_scaled_outer_product( second, 6 * den * f * g / ( d * d ), dtau ); pluseq_scaled_2nd_deriv_of_det( second, -2 * den * f * g / d, T ); return true; }
std::string MBMesquite::TShape3DB2::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 43 of file TShape3DB2.cpp.
{ return "TShape3DB2"; }