MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TShapeSize2DNB1.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TShapeSize2DNB1 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
|T|^2 - 2*sqrt(|T|^2 + 2*det(T))+2
Definition at line 42 of file TShapeSize2DNB1.hpp.
MBMesquite::TShapeSize2DNB1::~TShapeSize2DNB1 | ( | ) | [virtual] |
Definition at line 47 of file TShapeSize2DNB1.cpp.
{}
bool MBMesquite::TShapeSize2DNB1::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
\( \mu(T) = |T|^2 - 2 \psi(T) + 2 \) \( \psi(T) = \sqrt{|T|^2 + 2 \tau} \) \( \tau = det(T) \)
Reimplemented from MBMesquite::TMetric.
Definition at line 53 of file TShapeSize2DNB1.cpp.
References MBMesquite::det(), and MBMesquite::sqr_Frobenius().
{ double frob_sqr = sqr_Frobenius( T ); double psi = sqrt( frob_sqr + 2.0 * det( T ) ); MsqMatrix< 2, 2 > Tdelta( T ); while( fabs( psi ) < DBL_EPSILON ) { Tdelta( 0, 0 ) += 1e-12; Tdelta( 1, 1 ) += 1e-12; frob_sqr = sqr_Frobenius( Tdelta ); psi = sqrt( frob_sqr + 2.0 * det( Tdelta ) ); } result = frob_sqr - 2.0 * psi + 2.0; return true; }
bool MBMesquite::TShapeSize2DNB1::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 71 of file TShapeSize2DNB1.cpp.
References MBMesquite::det(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ double frob_sqr = sqr_Frobenius( T ); double psi = sqrt( frob_sqr + 2.0 * det( T ) ); MsqMatrix< 2, 2 > Tdelta( T ); while( fabs( psi ) < DBL_EPSILON ) { Tdelta( 0, 0 ) += 1e-12; Tdelta( 1, 1 ) += 1e-12; frob_sqr = sqr_Frobenius( Tdelta ); psi = sqrt( frob_sqr + 2.0 * det( Tdelta ) ); } result = frob_sqr - 2.0 * psi + 2.0; deriv_wrt_T = T; if( psi > 1e-50 ) { deriv_wrt_T *= ( 1.0 - 1.0 / psi ); deriv_wrt_T -= 1.0 / psi * transpose_adj( T ); deriv_wrt_T *= 2; } else { std::cout << "Warning: Division by zero avoided in TShapeSize2DNB2::evaluate_with_grad()" << std::endl; } return true; }
bool MBMesquite::TShapeSize2DNB1::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 105 of file TShapeSize2DNB1.cpp.
References MBMesquite::det(), MBMesquite::pluseq_scaled_I(), MBMesquite::set_scaled_2nd_deriv_wrt_psi(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ double frob_sqr = sqr_Frobenius( T ); double psi = sqrt( frob_sqr + 2.0 * det( T ) ); MsqMatrix< 2, 2 > Tdelta( T ); while( fabs( psi ) < DBL_EPSILON ) { Tdelta( 0, 0 ) += 1e-12; Tdelta( 1, 1 ) += 1e-12; frob_sqr = sqr_Frobenius( Tdelta ); psi = sqrt( frob_sqr + 2.0 * det( Tdelta ) ); } result = frob_sqr - 2.0 * psi + 2.0; deriv_wrt_T = T; if( psi > 1e-50 ) { deriv_wrt_T *= ( 1.0 - 1.0 / psi ); deriv_wrt_T -= 1.0 / psi * transpose_adj( T ); deriv_wrt_T *= 2; } else { std::cout << "Warning: Division by zero avoided in TShapeSize2DNB2::evaluate_with_hess()" << std::endl; } set_scaled_2nd_deriv_wrt_psi( second, -2.0, psi, T ); pluseq_scaled_I( second, 2 ); return true; }
std::string MBMesquite::TShapeSize2DNB1::get_name | ( | ) | const [virtual] |
Implements MBMesquite::TMetric.
Definition at line 42 of file TShapeSize2DNB1.cpp.
{ return "TShapeSize2DNB1"; }