MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TShape2DNB2.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TShape2DNB2 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
\( |T^t T - \tau I|^2 \)
Definition at line 42 of file TShape2DNB2.hpp.
MBMesquite::TShape2DNB2::~TShape2DNB2 | ( | ) | [virtual] |
Definition at line 45 of file TShape2DNB2.cpp.
{}
bool MBMesquite::TShape2DNB2::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 47 of file TShape2DNB2.cpp.
References MBMesquite::det(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose().
bool MBMesquite::TShape2DNB2::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 57 of file TShape2DNB2.cpp.
References MBMesquite::det(), MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ const MsqMatrix< 2, 2 > TtT = transpose( T ) * T; const double tau = det( T ); const double nTtT = sqr_Frobenius( TtT ); const double nT = sqr_Frobenius( T ); result = nTtT + 2 * tau * ( tau - nT ); deriv_wrt_T = T * TtT; deriv_wrt_T -= tau * T; deriv_wrt_T += ( tau - 0.5 * nT ) * transpose_adj( T ); deriv_wrt_T *= 4; return true; }
bool MBMesquite::TShape2DNB2::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 76 of file TShape2DNB2.cpp.
References MBMesquite::det(), MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_outer_product(), MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ const MsqMatrix< 2, 2 > TtT = transpose( T ) * T; const double tau = det( T ); const double nTtT = sqr_Frobenius( TtT ); const double nT = sqr_Frobenius( T ); result = nTtT + 2 * tau * ( tau - nT ); const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); deriv_wrt_T = T * TtT; deriv_wrt_T -= tau * T; deriv_wrt_T += ( tau - 0.5 * nT ) * adjt; deriv_wrt_T *= 4; set_scaled_outer_product( second_wrt_T, 1, T ); second_wrt_T[1] = transpose( second_wrt_T[1] ); second_wrt_T[0] += TtT; second_wrt_T[2] += TtT; const MsqMatrix< 2, 2 > TTt = T * transpose( T ); second_wrt_T[0]( 0, 0 ) += TTt( 0, 0 ); second_wrt_T[0]( 1, 1 ) += TTt( 0, 0 ); second_wrt_T[1]( 0, 0 ) += TTt( 0, 1 ); second_wrt_T[1]( 1, 1 ) += TTt( 0, 1 ); second_wrt_T[2]( 0, 0 ) += TTt( 1, 1 ); second_wrt_T[2]( 1, 1 ) += TTt( 1, 1 ); pluseq_scaled_I( second_wrt_T, -tau ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -0.5 * nT ); pluseq_scaled_sum_outer_product( second_wrt_T, -1, T, adjt ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, tau ); pluseq_scaled_outer_product( second_wrt_T, 1, adjt ); second_wrt_T[1] *= 4; second_wrt_T[0] *= 4; second_wrt_T[2] *= 4; return true; }
std::string MBMesquite::TShape2DNB2::get_name | ( | ) | const [virtual] |
Implements MBMesquite::TMetric.
Definition at line 40 of file TShape2DNB2.cpp.
{ return "TShape2DNB2"; }