MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TShapeOrientB1.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT | ~TShapeOrientB1 () |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
(|T| - tr(T)/sqrt(n))/(2 tau)
Definition at line 42 of file TShapeOrientB1.hpp.
MBMesquite::TShapeOrientB1::~TShapeOrientB1 | ( | ) | [virtual] |
Definition at line 48 of file TShapeOrientB1.cpp.
{}
bool MBMesquite::TShapeOrientB1::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 50 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_TWO, and MBMesquite::trace().
{ const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = 0.5 / tau * ( Frobenius( T ) - trace( T ) / MSQ_SQRT_TWO ); return true; }
bool MBMesquite::TShapeOrientB1::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 125 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_THREE, and MBMesquite::trace().
{ const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } result = 0.5 / tau * ( Frobenius( T ) - trace( T ) / MSQ_SQRT_THREE ); return true; }
bool MBMesquite::TShapeOrientB1::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 62 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_TWO, MBMesquite::pluseq_scaled_I(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double norm = Frobenius( T ); const double invroot = 1.0 / MSQ_SQRT_TWO; const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const double inv_tau = 1.0 / tau; const double invnorm = 1.0 / norm; result = 0.5 * inv_tau * ( norm - invroot * trace( T ) ); deriv_wrt_T = invnorm * T; pluseq_scaled_I( deriv_wrt_T, -invroot ); deriv_wrt_T *= 0.5; deriv_wrt_T -= result * transpose_adj( T ); deriv_wrt_T *= inv_tau; return true; }
bool MBMesquite::TShapeOrientB1::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 137 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_THREE, MBMesquite::pluseq_scaled_I(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double norm = Frobenius( T ); const double invroot = 1.0 / MSQ_SQRT_THREE; const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const double inv_tau = 1.0 / tau; const double invnorm = 1.0 / norm; result = 0.5 * inv_tau * ( norm - invroot * trace( T ) ); deriv_wrt_T = invnorm * T; pluseq_scaled_I( deriv_wrt_T, -invroot ); deriv_wrt_T *= 0.5; deriv_wrt_T -= result * transpose_adj( T ); deriv_wrt_T *= inv_tau; return true; }
bool MBMesquite::TShapeOrientB1::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 88 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_TWO, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product_I(), MBMesquite::set_scaled_outer_product(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double norm = Frobenius( T ); const double invroot = 1.0 / MSQ_SQRT_TWO; const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const double inv_tau = 1.0 / tau; const double invnorm = 1.0 / norm; const double f = norm - invroot * trace( T ); result = 0.5 * inv_tau * f; const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); deriv_wrt_T = invnorm * T; pluseq_scaled_I( deriv_wrt_T, -invroot ); deriv_wrt_T *= 0.5; deriv_wrt_T -= result * adjt; deriv_wrt_T *= inv_tau; const double a = 0.5 * inv_tau * invnorm; set_scaled_outer_product( second_wrt_T, -a * invnorm * invnorm, T ); pluseq_scaled_I( second_wrt_T, a ); pluseq_scaled_outer_product( second_wrt_T, f * inv_tau * inv_tau * inv_tau, adjt ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -0.5 * f * inv_tau * inv_tau, T ); pluseq_scaled_sum_outer_product( second_wrt_T, -0.5 * inv_tau * inv_tau * invnorm, T, adjt ); pluseq_scaled_sum_outer_product_I( second_wrt_T, 0.5 * inv_tau * inv_tau * invroot, adjt ); return true; }
bool MBMesquite::TShapeOrientB1::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 163 of file TShapeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::Frobenius(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::MSQ_SQRT_THREE, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product_I(), MBMesquite::set_scaled_outer_product(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double norm = Frobenius( T ); const double invroot = 1.0 / MSQ_SQRT_THREE; const double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const double inv_tau = 1.0 / tau; const double invnorm = 1.0 / norm; const double f = norm - invroot * trace( T ); result = 0.5 * inv_tau * f; const MsqMatrix< 3, 3 > adjt = transpose_adj( T ); deriv_wrt_T = invnorm * T; pluseq_scaled_I( deriv_wrt_T, -invroot ); deriv_wrt_T *= 0.5; deriv_wrt_T -= result * adjt; deriv_wrt_T *= inv_tau; const double a = 0.5 * inv_tau * invnorm; set_scaled_outer_product( second_wrt_T, -a * invnorm * invnorm, T ); pluseq_scaled_I( second_wrt_T, a ); pluseq_scaled_outer_product( second_wrt_T, f * inv_tau * inv_tau * inv_tau, adjt ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -0.5 * f * inv_tau * inv_tau, T ); pluseq_scaled_sum_outer_product( second_wrt_T, -0.5 * inv_tau * inv_tau * invnorm, T, adjt ); pluseq_scaled_sum_outer_product_I( second_wrt_T, 0.5 * inv_tau * inv_tau * invroot, adjt ); return true; }
std::string MBMesquite::TShapeOrientB1::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 43 of file TShapeOrientB1.cpp.
{ return "TShapeOrientB1"; }