MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TShapeSizeOrientB1.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TShapeSizeOrientB1 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
|T-I|^2/ (2 det(T))
Definition at line 42 of file TShapeSizeOrientB1.hpp.
MBMesquite::TShapeSizeOrientB1::~TShapeSizeOrientB1 | ( | ) | [virtual] |
Definition at line 47 of file TShapeSizeOrientB1.cpp.
{}
bool MBMesquite::TShapeSizeOrientB1::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 49 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), and MBMesquite::sqr_Frobenius().
{ double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } MsqMatrix< 2, 2 > T_I( T ); pluseq_scaled_I( T_I, -1 ); result = sqr_Frobenius( T_I ) / ( 2 * tau ); return true; }
bool MBMesquite::TShapeSizeOrientB1::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 117 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), and MBMesquite::sqr_Frobenius().
{ double tau = det( T ); if( TMetric::invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } MsqMatrix< 3, 3 > T_I( T ); pluseq_scaled_I( T_I, -1 ); result = sqr_Frobenius( T_I ) / ( 2 * tau ); return true; }
bool MBMesquite::TShapeSizeOrientB1::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 64 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( TMetric::invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } deriv_wrt_T = T; pluseq_scaled_I( deriv_wrt_T, -1 ); double inv_d = 1.0 / d; result = 0.5 * sqr_Frobenius( deriv_wrt_T ) * inv_d; deriv_wrt_T -= result * transpose_adj( T ); deriv_wrt_T *= inv_d; return true; }
bool MBMesquite::TShapeSizeOrientB1::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 132 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( TMetric::invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } deriv_wrt_T = T; pluseq_scaled_I( deriv_wrt_T, -1 ); double inv_d = 1.0 / d; result = 0.5 * sqr_Frobenius( deriv_wrt_T ) * inv_d; deriv_wrt_T -= result * transpose_adj( T ); deriv_wrt_T *= inv_d; return true; }
bool MBMesquite::TShapeSizeOrientB1::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 87 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_outer_product(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( TMetric::invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } deriv_wrt_T = T; pluseq_scaled_I( deriv_wrt_T, -1.0 ); double inv_d = 1.0 / d; result = 0.5 * sqr_Frobenius( deriv_wrt_T ) * inv_d; MsqMatrix< 2, 2 > adjt = transpose_adj( T ); set_scaled_outer_product( second_wrt_T, 2 * result * inv_d * inv_d, adjt ); pluseq_scaled_sum_outer_product( second_wrt_T, -inv_d * inv_d, deriv_wrt_T, adjt ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -result * inv_d, T ); pluseq_scaled_I( second_wrt_T, inv_d ); deriv_wrt_T -= result * adjt; deriv_wrt_T *= inv_d; return true; }
bool MBMesquite::TShapeSizeOrientB1::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 155 of file TShapeSizeOrientB1.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_outer_product(), MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( TMetric::invalid_determinant( d ) ) { // barrier MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } deriv_wrt_T = T; pluseq_scaled_I( deriv_wrt_T, -1.0 ); double inv_d = 1.0 / d; result = 0.5 * sqr_Frobenius( deriv_wrt_T ) * inv_d; MsqMatrix< 3, 3 > adjt = transpose_adj( T ); set_scaled_outer_product( second_wrt_T, 2 * result * inv_d * inv_d, adjt ); pluseq_scaled_sum_outer_product( second_wrt_T, -inv_d * inv_d, deriv_wrt_T, adjt ); pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -result * inv_d, T ); pluseq_scaled_I( second_wrt_T, inv_d ); deriv_wrt_T -= result * adjt; deriv_wrt_T *= inv_d; return true; }
std::string MBMesquite::TShapeSizeOrientB1::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 42 of file TShapeSizeOrientB1.cpp.
{ return "TShapeSizeOrientB1"; }