MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2010 Sandia National Laboratories. Developed at the 00005 University of Wisconsin--Madison under SNL contract number 00006 624796. The U.S. Government and the University of Wisconsin 00007 retain certain rights to this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2010) kraftche@cae.wisc.edu 00024 00025 ***************************************************************** */ 00026 00027 /** \file TMetric.cpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #include "Mesquite.hpp" 00033 #include "TMetric.hpp" 00034 #include "TMetricBarrier.hpp" 00035 #include "MsqMatrix.hpp" 00036 #include "MsqError.hpp" 00037 #include <limits> 00038 00039 namespace MBMesquite 00040 { 00041 00042 template < unsigned Dim > 00043 static inline double do_finite_difference( int r, 00044 int c, 00045 TMetric* metric, 00046 MsqMatrix< Dim, Dim > A, 00047 double value, 00048 MsqError& err ) 00049 { 00050 const double INITIAL_STEP = std::max( 1e-6, fabs( 1e-14 * value ) ); 00051 const double init = A( r, c ); 00052 bool valid; 00053 double diff_value; 00054 for( double step = INITIAL_STEP; step > std::numeric_limits< double >::epsilon(); step *= 0.1 ) 00055 { 00056 A( r, c ) = init + step; 00057 valid = metric->evaluate( A, diff_value, err ); 00058 MSQ_ERRZERO( err ); 00059 if( valid ) return ( diff_value - value ) / step; 00060 } 00061 00062 // If we couldn't find a valid step, try stepping in the other 00063 // direciton 00064 for( double step = INITIAL_STEP; step > std::numeric_limits< double >::epsilon(); step *= 0.1 ) 00065 { 00066 A( r, c ) = init - step; 00067 valid = metric->evaluate( A, diff_value, err ); 00068 MSQ_ERRZERO( err ); 00069 if( valid ) return ( value - diff_value ) / step; 00070 } 00071 // If that didn't work either, then give up. 00072 MSQ_SETERR( err ) 00073 ( "No valid step size for finite difference of 2D target metric.", MsqError::INTERNAL_ERROR ); 00074 return 0.0; 00075 } 00076 00077 template < unsigned Dim > 00078 static inline bool do_numerical_gradient( TMetric* mu, 00079 MsqMatrix< Dim, Dim > A, 00080 double& result, 00081 MsqMatrix< Dim, Dim >& wrt_A, 00082 MsqError& err ) 00083 { 00084 bool valid; 00085 valid = mu->evaluate( A, result, err ); 00086 MSQ_ERRZERO( err ); 00087 if( MSQ_CHKERR( err ) || !valid ) return valid; 00088 00089 switch( Dim ) 00090 { 00091 case 3: 00092 wrt_A( 0, 2 ) = do_finite_difference( 0, 2, mu, A, result, err ); 00093 MSQ_ERRZERO( err ); 00094 wrt_A( 1, 2 ) = do_finite_difference( 1, 2, mu, A, result, err ); 00095 MSQ_ERRZERO( err ); 00096 wrt_A( 2, 0 ) = do_finite_difference( 2, 0, mu, A, result, err ); 00097 MSQ_ERRZERO( err ); 00098 wrt_A( 2, 1 ) = do_finite_difference( 2, 1, mu, A, result, err ); 00099 MSQ_ERRZERO( err ); 00100 wrt_A( 2, 2 ) = do_finite_difference( 2, 2, mu, A, result, err ); 00101 MSQ_ERRZERO( err ); 00102 case 2: 00103 wrt_A( 0, 1 ) = do_finite_difference( 0, 1, mu, A, result, err ); 00104 MSQ_ERRZERO( err ); 00105 wrt_A( 1, 0 ) = do_finite_difference( 1, 0, mu, A, result, err ); 00106 MSQ_ERRZERO( err ); 00107 wrt_A( 1, 1 ) = do_finite_difference( 1, 1, mu, A, result, err ); 00108 MSQ_ERRZERO( err ); 00109 case 1: 00110 wrt_A( 0, 0 ) = do_finite_difference( 0, 0, mu, A, result, err ); 00111 MSQ_ERRZERO( err ); 00112 break; 00113 default: 00114 assert( false ); 00115 } 00116 return true; 00117 } 00118 00119 template < unsigned Dim > 00120 static inline bool do_numerical_hessian( TMetric* metric, 00121 MsqMatrix< Dim, Dim > A, 00122 double& value, 00123 MsqMatrix< Dim, Dim >& grad, 00124 MsqMatrix< Dim, Dim >* Hess, 00125 MsqError& err ) 00126 { 00127 // zero hessian data 00128 const int num_block = Dim * ( Dim + 1 ) / 2; 00129 for( int i = 0; i < num_block; ++i ) 00130 Hess[i].zero(); 00131 00132 // evaluate gradient for input values 00133 bool valid; 00134 valid = metric->evaluate_with_grad( A, value, grad, err ); 00135 if( MSQ_CHKERR( err ) || !valid ) return false; 00136 00137 // do finite difference for each term of A 00138 const double INITAL_STEP = std::max( 1e-6, fabs( 1e-14 * value ) ); 00139 double value2; 00140 MsqMatrix< Dim, Dim > grad2; 00141 for( unsigned r = 0; r < Dim; ++r ) 00142 { // for each row of A 00143 for( unsigned c = 0; c < Dim; ++c ) 00144 { // for each column of A 00145 const double in_val = A( r, c ); 00146 double step; 00147 for( step = INITAL_STEP; step > std::numeric_limits< double >::epsilon(); step *= 0.1 ) 00148 { 00149 A( r, c ) = in_val + step; 00150 valid = metric->evaluate_with_grad( A, value2, grad2, err ); 00151 MSQ_ERRZERO( err ); 00152 if( valid ) break; 00153 } 00154 00155 // if no valid step size, try step in other direction 00156 if( !valid ) 00157 { 00158 for( step = -INITAL_STEP; step < -std::numeric_limits< double >::epsilon(); step *= 0.1 ) 00159 { 00160 A( r, c ) = in_val + step; 00161 valid = metric->evaluate_with_grad( A, value2, grad2, err ); 00162 MSQ_ERRZERO( err ); 00163 if( valid ) break; 00164 } 00165 00166 // if still no valid step size, give up. 00167 if( !valid ) 00168 { 00169 MSQ_SETERR( err ) 00170 ( "No valid step size for finite difference of 2D target metric.", MsqError::INTERNAL_ERROR ); 00171 return false; 00172 } 00173 } 00174 00175 // restore A. 00176 A( r, c ) = in_val; 00177 00178 // add values into result matrix 00179 // values of grad2, in row-major order, are a single 9-value row of the Hessian 00180 grad2 -= grad; 00181 grad2 /= step; 00182 for( unsigned b = 0; b < r; ++b ) 00183 { 00184 const int idx = Dim * b - b * ( b + 1 ) / 2 + r; 00185 Hess[idx].add_column( c, transpose( grad2.row( b ) ) ); 00186 } 00187 for( unsigned b = r; b < Dim; ++b ) 00188 { 00189 const int idx = Dim * r - r * ( r + 1 ) / 2 + b; 00190 Hess[idx].add_row( c, grad2.row( b ) ); 00191 } 00192 } // for (c) 00193 } // for (r) 00194 00195 // Values in non-diagonal blocks were added twice. 00196 for( unsigned r = 0, h = 1; r < Dim - 1; ++r, ++h ) 00197 for( unsigned c = r + 1; c < Dim; ++c, ++h ) 00198 Hess[h] *= 0.5; 00199 00200 return true; 00201 } 00202 00203 TMetric::~TMetric() {} 00204 00205 bool TMetric::evaluate( const MsqMatrix< 2, 2 >& /*T*/, double& /*result*/, MsqError& /*err*/ ) 00206 { 00207 return false; 00208 } 00209 00210 bool TMetric::evaluate( const MsqMatrix< 3, 3 >& /*T*/, double& /*result*/, MsqError& /*err*/ ) 00211 { 00212 return false; 00213 } 00214 00215 bool TMetric::evaluate_with_grad( const MsqMatrix< 2, 2 >& T, double& result, MsqMatrix< 2, 2 >& wrt_T, MsqError& err ) 00216 { 00217 return do_numerical_gradient( this, T, result, wrt_T, err ); 00218 } 00219 00220 bool TMetric::evaluate_with_grad( const MsqMatrix< 3, 3 >& T, double& result, MsqMatrix< 3, 3 >& wrt_T, MsqError& err ) 00221 { 00222 return do_numerical_gradient( this, T, result, wrt_T, err ); 00223 } 00224 00225 bool TMetric::evaluate_with_hess( const MsqMatrix< 2, 2 >& T, 00226 double& result, 00227 MsqMatrix< 2, 2 >& deriv_wrt_T, 00228 MsqMatrix< 2, 2 > hess_wrt_T[3], 00229 MsqError& err ) 00230 { 00231 return do_numerical_hessian( this, T, result, deriv_wrt_T, hess_wrt_T, err ); 00232 } 00233 00234 bool TMetric::evaluate_with_hess( const MsqMatrix< 3, 3 >& T, 00235 double& result, 00236 MsqMatrix< 3, 3 >& deriv_wrt_T, 00237 MsqMatrix< 3, 3 > hess_wrt_T[6], 00238 MsqError& err ) 00239 { 00240 return do_numerical_hessian( this, T, result, deriv_wrt_T, hess_wrt_T, err ); 00241 } 00242 00243 TMetric2D::~TMetric2D() {} 00244 TMetric3D::~TMetric3D() {} 00245 00246 bool TMetric2D::evaluate( const MsqMatrix< 3, 3 >&, double&, MsqError& err ) 00247 { 00248 MSQ_SETERR( err ) 00249 ( "2D target metric cannot be evaluated for volume elements", MsqError::UNSUPPORTED_ELEMENT ); 00250 return false; 00251 } 00252 00253 bool TMetric3D::evaluate( const MsqMatrix< 2, 2 >&, double&, MsqError& err ) 00254 { 00255 MSQ_SETERR( err ) 00256 ( "2D target metric cannot be evaluated for volume elements", MsqError::UNSUPPORTED_ELEMENT ); 00257 return false; 00258 } 00259 00260 } // namespace MBMesquite