MOAB: Mesh Oriented datABase  (version 5.4.1)
MBMesquite::TMixed Class Reference

Use different target metrics for surface and volume elements. More...

#include <TMixed.hpp>

+ Inheritance diagram for MBMesquite::TMixed:
+ Collaboration diagram for MBMesquite::TMixed:

Public Member Functions

 TMixed (TMetric *mu_2d, TMetric *mu_3d)
virtual MESQUITE_EXPORT ~TMixed ()
virtual MESQUITE_EXPORT std::string get_name () const
virtual MESQUITE_EXPORT bool evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err)
 Evaluate \(\mu(T)\).
virtual MESQUITE_EXPORT bool evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err)
 Gradient of \(\mu(T)\) with respect to components of T.
virtual MESQUITE_EXPORT bool evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err)
 Hessian of \(\mu(T)\) with respect to components of T.
virtual MESQUITE_EXPORT bool evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err)
 Evaluate \(\mu(T)\).
virtual MESQUITE_EXPORT bool evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err)
 Gradient of \(\mu(T)\) with respect to components of T.
virtual MESQUITE_EXPORT bool evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err)
 Hessian of \(\mu(T)\) with respect to components of T.

Private Attributes

TMetricmu2D
TMetricmu3D

Detailed Description

Use different target metrics for surface and volume elements.

This class can be used to set up a quality metric for which the target metric is different for surface elements than the one used for volume elements. It is typicallly used to set up an optimization using target metrics that aren't implemented for both topological dimemensions of elements.

Definition at line 49 of file TMixed.hpp.


Constructor & Destructor Documentation

MBMesquite::TMixed::TMixed ( TMetric mu_2d,
TMetric mu_3d 
) [inline]

Definition at line 55 of file TMixed.hpp.

: mu2D( mu_2d ), mu3D( mu_3d ) {}

Definition at line 50 of file TMixed.cpp.

{}

Member Function Documentation

bool MBMesquite::TMixed::evaluate ( const MsqMatrix< 2, 2 > &  T,
double &  result,
MsqError err 
) [virtual]

Evaluate \(\mu(T)\).

Parameters:
T2x2 relative measure matrix (typically A W^-1)
resultOutput: value of function
Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

Definition at line 52 of file TMixed.cpp.

References MBMesquite::TMetric::evaluate(), MSQ_ERRZERO, and mu2D.

{
    bool rval = mu2D->evaluate( T, result, err );
    MSQ_ERRZERO( err );
    return rval;
}
bool MBMesquite::TMixed::evaluate ( const MsqMatrix< 3, 3 > &  T,
double &  result,
MsqError err 
) [virtual]

Evaluate \(\mu(T)\).

Parameters:
T3x3 relative measure matrix (typically A W^-1)
resultOutput: value of function
Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

Definition at line 59 of file TMixed.cpp.

References MBMesquite::TMetric::evaluate(), MSQ_ERRZERO, and mu3D.

{
    bool rval = mu3D->evaluate( T, result, err );
    MSQ_ERRZERO( err );
    return rval;
}
bool MBMesquite::TMixed::evaluate_with_grad ( const MsqMatrix< 2, 2 > &  T,
double &  result,
MsqMatrix< 2, 2 > &  deriv_wrt_T,
MsqError err 
) [virtual]

Gradient of \(\mu(T)\) with respect to components of T.

Parameters:
T2x2 relative measure matrix (typically A W^-1)
resultOutput: value of function
deriv_wrt_TOutput: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T.

\[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

Definition at line 66 of file TMixed.cpp.

References MBMesquite::TMetric::evaluate_with_grad(), MSQ_ERRZERO, and mu2D.

{
    bool rval = mu2D->evaluate_with_grad( T, result, deriv_wrt_T, err );
    MSQ_ERRZERO( err );
    return rval;
}
bool MBMesquite::TMixed::evaluate_with_grad ( const MsqMatrix< 3, 3 > &  T,
double &  result,
MsqMatrix< 3, 3 > &  deriv_wrt_T,
MsqError err 
) [virtual]

Gradient of \(\mu(T)\) with respect to components of T.

Parameters:
T3x3 relative measure matrix (typically A W^-1)
resultOutput: value of function
deriv_wrt_TOutput: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T.

\[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\]

Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

Definition at line 76 of file TMixed.cpp.

References MBMesquite::TMetric::evaluate_with_grad(), MSQ_ERRZERO, and mu3D.

{
    bool rval = mu3D->evaluate_with_grad( T, result, deriv_wrt_T, err );
    MSQ_ERRZERO( err );
    return rval;
}
bool MBMesquite::TMixed::evaluate_with_hess ( const MsqMatrix< 2, 2 > &  T,
double &  result,
MsqMatrix< 2, 2 > &  deriv_wrt_T,
MsqMatrix< 2, 2 >  second_wrt_T[3],
MsqError err 
) [virtual]

Hessian of \(\mu(T)\) with respect to components of T.

Parameters:
T3x3 relative measure matrix (typically A W^-1)
resultOutput: value of function
deriv_wrt_TOutput: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T.
second_wrt_TOutput: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned.

\[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

Definition at line 86 of file TMixed.cpp.

References MBMesquite::TMetric::evaluate_with_hess(), MSQ_ERRZERO, and mu2D.

{
    bool rval = mu2D->evaluate_with_hess( T, result, deriv_wrt_T, second_wrt_T, err );
    MSQ_ERRZERO( err );
    return rval;
}
virtual MESQUITE_EXPORT bool MBMesquite::TMixed::evaluate_with_hess ( const MsqMatrix< 3, 3 > &  T,
double &  result,
MsqMatrix< 3, 3 > &  deriv_wrt_T,
MsqMatrix< 3, 3 >  second_wrt_T[6],
MsqError err 
) [virtual]

Hessian of \(\mu(T)\) with respect to components of T.

Parameters:
T3x3 relative measure matrix (typically A W^-1)
resultOutput: value of function
deriv_wrt_TOutput: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T.
second_wrt_TOutput: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned.

\[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given T (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::TMetric.

std::string MBMesquite::TMixed::get_name ( ) const [virtual]

Implements MBMesquite::TMetric.

Definition at line 42 of file TMixed.cpp.

References MBMesquite::TMetric::get_name(), mu2D, and mu3D.

{
    std::ostringstream name;
    name << "2D:" << mu2D->get_name() << "; "
         << "3D:" << mu3D->get_name();
    return name.str();
}

Member Data Documentation

Definition at line 51 of file TMixed.hpp.

Referenced by evaluate(), evaluate_with_grad(), evaluate_with_hess(), and get_name().

Definition at line 52 of file TMixed.hpp.

Referenced by evaluate(), evaluate_with_grad(), and get_name().

List of all members.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines