MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TShapeSizeOrientB2.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TShapeSizeOrientB2 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &wrt_T, MsqError &err) |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
MBMesquite::TShapeSizeOrientB2::~TShapeSizeOrientB2 | ( | ) | [virtual] |
Definition at line 46 of file TShapeSizeOrientB2.cpp.
{}
bool MBMesquite::TShapeSizeOrientB2::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 48 of file TShapeSizeOrientB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), and MBMesquite::sqr_Frobenius().
{ double d = det( T ); if( TMetric::invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } MsqMatrix< 2, 2 > T_inv = 1 / d * adj( T ); pluseq_scaled_I( T_inv, -1.0 ); result = sqr_Frobenius( T_inv ); return true; }
bool MBMesquite::TShapeSizeOrientB2::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 62 of file TShapeSizeOrientB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetric::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_I(), and MBMesquite::sqr_Frobenius().
{ double d = det( T ); if( TMetric::invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } MsqMatrix< 3, 3 > T_inv = 1 / d * adj( T ); pluseq_scaled_I( T_inv, -1.0 ); result = sqr_Frobenius( T_inv ); return true; }
bool MBMesquite::TShapeSizeOrientB2::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
\( \frac{1}{\tau^2}|T|^2 - \frac{2}{\tau}tr(adj T) + 2 \)
Reimplemented from MBMesquite::TMetric.
Definition at line 77 of file TShapeSizeOrientB2.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double tau = det( T ); if( invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); const double it = 1.0 / tau; result = it * ( it * sqr_Frobenius( T ) - 2.0 * trace( T ) ) + 2.0; deriv_wrt_T = T; deriv_wrt_T *= it * it; deriv_wrt_T( 0, 0 ) -= it; deriv_wrt_T( 1, 1 ) -= it; deriv_wrt_T += it * it * ( trace( T ) - it * sqr_Frobenius( T ) ) * adjt; deriv_wrt_T *= 2.0; return true; }
bool MBMesquite::TShapeSizeOrientB2::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
\( \frac{1}{\tau^2}|adj T|^2 - \frac{2}{\tau}tr(adj T) + 3 \)
Reimplemented from MBMesquite::TMetric.
Definition at line 102 of file TShapeSizeOrientB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, MBMesquite::trace(), and MBMesquite::transpose().
{ const double tau = det( T ); if( invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const MsqMatrix< 3, 3 > adjt = adj( T ); const double it = 1.0 / tau; result = it * ( it * sqr_Frobenius( adjt ) - 2.0 * trace( adjt ) ) + 3.0; deriv_wrt_T = T; deriv_wrt_T *= sqr_Frobenius( T ); deriv_wrt_T -= T * transpose( T ) * T; deriv_wrt_T *= it * it; deriv_wrt_T += it * it * ( trace( adjt ) - it * sqr_Frobenius( adjt ) ) * transpose( adjt ); double f = trace( T ) * it; deriv_wrt_T( 0, 0 ) -= f; deriv_wrt_T( 1, 1 ) -= f; deriv_wrt_T( 2, 2 ) -= f; deriv_wrt_T += it * transpose( T ); deriv_wrt_T *= 2.0; return true; }
bool MBMesquite::TShapeSizeOrientB2::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 136 of file TShapeSizeOrientB2.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_I(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product_I(), MBMesquite::set_scaled_outer_product(), MBMesquite::sqr_Frobenius(), T, MBMesquite::trace(), and MBMesquite::transpose_adj().
{ const double tau = det( T ); if( invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); const double it = 1.0 / tau; result = it * ( it * sqr_Frobenius( T ) - 2.0 * trace( T ) ) + 2.0; deriv_wrt_T = T; deriv_wrt_T *= it * it; deriv_wrt_T( 0, 0 ) -= it; deriv_wrt_T( 1, 1 ) -= it; deriv_wrt_T += it * it * ( trace( T ) - it * sqr_Frobenius( T ) ) * adjt; deriv_wrt_T *= 2.0; set_scaled_outer_product( second, it * it * it * ( 6 * it * sqr_Frobenius( T ) - 4 * trace( T ) ), adjt ); pluseq_scaled_I( second, 2 * it * it ); pluseq_scaled_2nd_deriv_of_det( second, 2 * it * it * ( trace( T ) - it * sqr_Frobenius( T ) ) ); pluseq_scaled_sum_outer_product( second, -4 * it * it * it, T, adjt ); pluseq_scaled_sum_outer_product_I( second, 2 * it * it, adjt ); return true; }
bool MBMesquite::TShapeSizeOrientB2::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 168 of file TShapeSizeOrientB2.cpp.
References MBMesquite::adj(), MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::pluseq_scaled_2nd_deriv_of_det(), MBMesquite::pluseq_scaled_2nd_deriv_tr_adj(), MBMesquite::pluseq_scaled_outer_product(), MBMesquite::pluseq_scaled_sum_outer_product(), MBMesquite::set_scaled_2nd_deriv_norm_sqr_adj(), MBMesquite::sqr_Frobenius(), T, MBMesquite::trace(), and MBMesquite::transpose().
{ const double tau = det( T ); if( invalid_determinant( tau ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } const MsqMatrix< 3, 3 > adjt = adj( T ); const double it = 1.0 / tau; const double nadjt = sqr_Frobenius( adjt ); const double nT = sqr_Frobenius( T ); const double tadjT = trace( adjt ); result = it * ( it * nadjt - 2.0 * tadjT ) + 3.0; const MsqMatrix< 3, 3 > TTtT = T * transpose( T ) * T; deriv_wrt_T = T; deriv_wrt_T *= nT; deriv_wrt_T -= TTtT; deriv_wrt_T *= it * it; deriv_wrt_T += it * it * ( tadjT - it * nadjt ) * transpose( adjt ); const double tT = trace( T ); double f = tT * it; deriv_wrt_T( 0, 0 ) -= f; deriv_wrt_T( 1, 1 ) -= f; deriv_wrt_T( 2, 2 ) -= f; deriv_wrt_T += it * transpose( T ); deriv_wrt_T *= 2.0; set_scaled_2nd_deriv_norm_sqr_adj( second, it * it, T ); const double yf = -it * it * it * it; const double sf = -2; const double zf = -it * it * sf; pluseq_scaled_2nd_deriv_of_det( second, yf * 2 * nadjt * tau + zf * tadjT, T ); pluseq_scaled_outer_product( second, yf * -6 * nadjt - 2 * zf * tadjT * it, transpose( adjt ) ); MsqMatrix< 3, 3 > dnadj_dT = 2 * ( nT * T - TTtT ); pluseq_scaled_sum_outer_product( second, yf * 2 * tau, dnadj_dT, transpose( adjt ) ); pluseq_scaled_2nd_deriv_tr_adj( second, sf * it ); MsqMatrix< 3, 3 > dtradj_dT = -transpose( T ); dtradj_dT( 0, 0 ) += tT; dtradj_dT( 1, 1 ) += tT; dtradj_dT( 2, 2 ) += tT; pluseq_scaled_sum_outer_product( second, zf, dtradj_dT, transpose( adjt ) ); return true; }
std::string MBMesquite::TShapeSizeOrientB2::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 41 of file TShapeSizeOrientB2.cpp.
{ return "TShapeSizeOrientB2"; }