MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <TInverseMeanRatio.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~TInverseMeanRatio () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. |
\( \frac{|T|^2}{2 det(T)} - 1 \)
Definition at line 43 of file TInverseMeanRatio.hpp.
MBMesquite::TInverseMeanRatio::~TInverseMeanRatio | ( | ) | [virtual] |
Definition at line 45 of file TInverseMeanRatio.cpp.
{}
bool MBMesquite::TInverseMeanRatio::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 47 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, and MBMesquite::sqr_Frobenius().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } else { result = sqr_Frobenius( T ) / ( 2 * d ) - 1; return true; } }
bool MBMesquite::TInverseMeanRatio::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
Definition at line 132 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::cbrt(), MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, and MBMesquite::sqr_Frobenius().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); return false; } else { const double det_cbrt = MBMesquite::cbrt( d ); result = sqr_Frobenius( T ) / ( 3 * det_cbrt * det_cbrt ) - 1; return true; } }
bool MBMesquite::TInverseMeanRatio::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
\( \frac{1}{det(T)} [ T - \frac{|T|^2}{2 det(T)}adj(T) ] \)
Reimplemented from MBMesquite::TMetric.
Definition at line 62 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); deriv_wrt_T = MsqMatrix< 2, 2 >( 0.0 ); return false; } else { result = sqr_Frobenius( T ) / ( 2 * d ); deriv_wrt_T = transpose_adj( T ); deriv_wrt_T *= -result; deriv_wrt_T += T; deriv_wrt_T *= 1.0 / d; result -= 1.0; return true; } }
bool MBMesquite::TInverseMeanRatio::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 148 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::cbrt(), MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::sqr_Frobenius(), T, and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); deriv_wrt_T = MsqMatrix< 3, 3 >( 0.0 ); return false; } const double inv_det = 1.0 / d; const double inv_det_cbrt = MBMesquite::cbrt( inv_det ); const double inv_3_det_twothirds = inv_det_cbrt * inv_det_cbrt / 3.0; const double fnorm = sqr_Frobenius( T ); result = fnorm * inv_3_det_twothirds - 1; deriv_wrt_T = transpose_adj( T ); deriv_wrt_T *= -fnorm * inv_det / 3.0; deriv_wrt_T += T; deriv_wrt_T *= 2.0 * inv_3_det_twothirds; return true; }
bool MBMesquite::TInverseMeanRatio::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 86 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::outer(), MBMesquite::MsqMatrix< R, C >::row(), MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); dA = d2A[0] = d2A[1] = d2A[2] = MsqMatrix< 2, 2 >( 0.0 ); return false; } else { const double inv_det = 1.0 / d; result = sqr_Frobenius( T ) * 0.5 * inv_det; const MsqMatrix< 2, 2 > AT = transpose_adj( T ); dA = AT; dA *= -result; dA += T; dA *= inv_det; const double p3 = -result * inv_det; const double p1 = -2.0 * p3 * inv_det; const double p2 = -inv_det * inv_det; const MsqMatrix< 2, 2 > AT_T_op_00 = outer( AT.row( 0 ), T.row( 0 ) ); const MsqMatrix< 2, 2 > AT_T_op_11 = outer( AT.row( 1 ), T.row( 1 ) ); d2A[0] = p1 * outer( AT.row( 0 ), AT.row( 0 ) ) + p2 * ( AT_T_op_00 + transpose( AT_T_op_00 ) ); d2A[1] = p1 * outer( AT.row( 0 ), AT.row( 1 ) ) + p2 * ( outer( AT.row( 0 ), T.row( 1 ) ) + outer( T.row( 0 ), AT.row( 1 ) ) ); d2A[2] = p1 * outer( AT.row( 1 ), AT.row( 1 ) ) + p2 * ( AT_T_op_11 + transpose( AT_T_op_11 ) ); d2A[0]( 0, 0 ) += inv_det; d2A[0]( 1, 1 ) += inv_det; d2A[1]( 0, 1 ) += p3; d2A[1]( 1, 0 ) -= p3; d2A[2]( 0, 0 ) += inv_det; d2A[2]( 1, 1 ) += inv_det; result -= 1.0; return true; } }
bool MBMesquite::TInverseMeanRatio::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
Definition at line 173 of file TInverseMeanRatio.cpp.
References MBMesquite::MsqError::BARRIER_VIOLATED, MBMesquite::barrier_violated_msg, MBMesquite::cbrt(), MBMesquite::det(), MBMesquite::TMetricBarrier::invalid_determinant(), MSQ_SETERR, MBMesquite::outer(), MBMesquite::MsqMatrix< R, C >::row(), MBMesquite::sqr_Frobenius(), T, MBMesquite::transpose(), and MBMesquite::transpose_adj().
{ const double d = det( T ); if( invalid_determinant( d ) ) { MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); dA = MsqMatrix< 3, 3 >( 0.0 ); return false; } const double f0 = 1.0 / d; const double c = MBMesquite::cbrt( f0 ); const double f1 = 1.0 / 3.0 * c * c; const double f2 = sqr_Frobenius( T ); result = f1 * f2; const double f3 = 2 * f1; const double f4 = result * ( 10.0 / 9.0 ) * f0 * f0; const double f5 = ( 1.0 / 3.0 ) * f0 * f3; const double f6 = 2 * f5; const double f7 = f2 * f5; const MsqMatrix< 3, 3 > AT = transpose_adj( T ); dA = AT; dA *= ( -1.0 / 3.0 ) * f0 * f2; dA += T; dA *= f3; MsqMatrix< 3, 3 > op; int i = 0; double s = 1; for( int r = 0; r < 3; ++r ) { d2A[i] = outer( AT.row( r ), AT.row( r ) ); d2A[i] *= f4; op = outer( AT.row( r ), T.row( r ) ); op += transpose( op ); op *= f6; d2A[i] -= op; d2A[i]( 0, 0 ) += f3; d2A[i]( 1, 1 ) += f3; d2A[i]( 2, 2 ) += f3; ++i; for( int cc = r + 1; cc < 3; ++cc ) { d2A[i] = outer( AT.row( r ), AT.row( cc ) ); d2A[i] *= f4; op = outer( AT.row( r ), T.row( cc ) ); op += outer( T.row( r ), AT.row( cc ) ); op *= f6; d2A[i] -= op; MsqMatrix< 1, 3 > rt = T.row( 3 - r - cc ); rt *= s * f7; d2A[i]( 0, 1 ) -= rt( 0, 2 ); d2A[i]( 0, 2 ) += rt( 0, 1 ); d2A[i]( 1, 0 ) += rt( 0, 2 ); d2A[i]( 1, 2 ) -= rt( 0, 0 ); d2A[i]( 2, 0 ) -= rt( 0, 1 ); d2A[i]( 2, 1 ) += rt( 0, 0 ); ++i; s = -s; } } result -= 1.0; return true; }
std::string MBMesquite::TInverseMeanRatio::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::TMetricBarrier.
Definition at line 40 of file TInverseMeanRatio.cpp.
{ return "TInverseMeanRatio"; }