MOAB: Mesh Oriented datABase
(version 5.4.1)
|
Composite untangle metric. More...
#include <TUntangleMu.hpp>
Public Member Functions | |
TUntangleMu (TMetric *base, double sigma=1.0) | |
TUntangleMu (TMetric *base, double sigma, double epsilon) | |
virtual MESQUITE_EXPORT | ~TUntangleMu () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &T, double &result, MsqMatrix< 2, 2 > &deriv_wrt_T, MsqMatrix< 2, 2 > second_wrt_T[3], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &T, double &result, MsqError &err) |
Evaluate \(\mu(T)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqError &err) |
Gradient of \(\mu(T)\) with respect to components of T. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &T, double &result, MsqMatrix< 3, 3 > &deriv_wrt_T, MsqMatrix< 3, 3 > second_wrt_T[6], MsqError &err) |
Hessian of \(\mu(T)\) with respect to components of T. | |
Private Member Functions | |
template<unsigned D> | |
bool | eval (const MsqMatrix< D, D > &T, double &result, MsqError &err) |
template<unsigned D> | |
bool | grad (const MsqMatrix< D, D > &T, double &result, MsqMatrix< D, D > &first, MsqError &err) |
template<unsigned D> | |
bool | hess (const MsqMatrix< D, D > &T, double &result, MsqMatrix< D, D > &first, MsqMatrix< D, D > *second, MsqError &err) |
Private Attributes | |
TMetric * | mBaseMetric |
double | mConstant |
Composite untangle metric.
This metric should be combined with TRel2DSize or TRel2DShapeSize to produce a concrete untangle metric.
\( \mu^\prime(T) = \frac{1}{8}(|d| - d)^3 \) \( d(T) = \sigma - \epsilon - \mu(T()) \)
Definition at line 50 of file TUntangleMu.hpp.
MBMesquite::TUntangleMu::TUntangleMu | ( | TMetric * | base, |
double | sigma = 1.0 |
||
) | [inline] |
Definition at line 57 of file TUntangleMu.hpp.
: mBaseMetric( base ), mConstant( 0.99 * sigma ) /* default epsilon is 0.01*sigma */ { }
MBMesquite::TUntangleMu::TUntangleMu | ( | TMetric * | base, |
double | sigma, | ||
double | epsilon | ||
) | [inline] |
Definition at line 62 of file TUntangleMu.hpp.
: mBaseMetric( base ), mConstant( sigma - epsilon ) {}
MBMesquite::TUntangleMu::~TUntangleMu | ( | ) | [virtual] |
Definition at line 42 of file TUntangleMu.cpp.
{}
bool MBMesquite::TUntangleMu::eval | ( | const MsqMatrix< DIM, DIM > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [inline, private] |
Definition at line 50 of file TUntangleMu.cpp.
References MBMesquite::TMetric::evaluate(), mBaseMetric, mConstant, and MSQ_CHKERR.
{ bool valid = mBaseMetric->evaluate( T, result, err ); if( MSQ_CHKERR( err ) || !valid ) return false; const double d = mConstant - result; const double s = fabs( d ) - d; result = 0.125 * s * s * s; return true; }
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(T)\).
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
Reimplemented from MBMesquite::TMetric.
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 2x2 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial T_{0,0}} & \frac{\partial\mu}{\partial T_{0,1}} & \frac{\partial\mu}{\partial T_{0,2}} \\ \frac{\partial\mu}{\partial T_{1,0}} & \frac{\partial\mu}{\partial T_{1,1}} & \frac{\partial\mu}{\partial T_{1,2}} \\ \frac{\partial\mu}{\partial T_{2,0}} & \frac{\partial\mu}{\partial T_{2,1}} & \frac{\partial\mu}{\partial T_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | T, |
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_T, | ||
MsqMatrix< 2, 2 > | second_wrt_T[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
virtual MESQUITE_EXPORT bool MBMesquite::TUntangleMu::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | T, |
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_T, | ||
MsqMatrix< 3, 3 > | second_wrt_T[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(T)\) with respect to components of T.
T | 3x3 relative measure matrix (typically A W^-1) |
result | Output: value of function |
deriv_wrt_T | Output: partial deriviatve of \(\mu\) wrt each term of T, evaluated at passed T. |
second_wrt_T | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of T, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial T_{0,0}^2} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}^2} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{2,2}} \\ \frac{\partial^{2}\mu}{\partial T_{0,0}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,1}\partial T_{0,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}^2} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{0,2}\partial T_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial T_{1,0}^2} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}^2} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial T_{1,0}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,1}\partial T_{1,2}} & \frac{\partial^{2}\mu}{\partial T_{1,2}^2} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,0}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{1,2}\partial T_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}^2} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,1}} & \frac{\partial^{2}\mu}{\partial T_{2,1}^2} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial T_{2,0}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,1}\partial T_{2,2}} & \frac{\partial^{2}\mu}{\partial T_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::TMetric.
std::string MBMesquite::TUntangleMu::get_name | ( | ) | const [virtual] |
Implements MBMesquite::TMetric.
Definition at line 44 of file TUntangleMu.cpp.
References MBMesquite::TMetric::get_name(), and mBaseMetric.
{ return "untangle(" + mBaseMetric->get_name() + ")"; }
bool MBMesquite::TUntangleMu::grad | ( | const MsqMatrix< DIM, DIM > & | T, |
double & | result, | ||
MsqMatrix< DIM, DIM > & | first, | ||
MsqError & | err | ||
) | [inline, private] |
Definition at line 62 of file TUntangleMu.cpp.
References MBMesquite::TMetric::evaluate_with_grad(), mBaseMetric, mConstant, and MSQ_CHKERR.
{ bool valid = mBaseMetric->evaluate_with_grad( T, result, deriv_wrt_T, err ); if( MSQ_CHKERR( err ) || !valid ) return false; if( mConstant < result ) { const double s = result - mConstant; result = s * s * s; deriv_wrt_T *= 3 * s * s; } else { result = 0; deriv_wrt_T = MsqMatrix< DIM, DIM >( 0.0 ); } return true; }
bool MBMesquite::TUntangleMu::hess | ( | const MsqMatrix< DIM, DIM > & | T, |
double & | result, | ||
MsqMatrix< DIM, DIM > & | first, | ||
MsqMatrix< DIM, DIM > * | second, | ||
MsqError & | err | ||
) | [inline, private] |
Definition at line 86 of file TUntangleMu.cpp.
References MBMesquite::TMetric::evaluate_with_hess(), MBMesquite::hess_scale(), mBaseMetric, mConstant, MSQ_CHKERR, MBMesquite::pluseq_scaled_outer_product(), and MBMesquite::set_scaled_I().
{ bool valid = mBaseMetric->evaluate_with_hess( T, result, deriv_wrt_T, second_wrt_T, err ); if( MSQ_CHKERR( err ) || !valid ) return false; if( mConstant < result ) { const double s = result - mConstant; result = s * s * s; hess_scale( second_wrt_T, 3 * s * s ); pluseq_scaled_outer_product( second_wrt_T, 6 * s, deriv_wrt_T ); deriv_wrt_T *= 3 * s * s; } else { result = 0; deriv_wrt_T = MsqMatrix< DIM, DIM >( 0.0 ); set_scaled_I( second_wrt_T, 0.0 ); // zero everything } return true; }
TMetric* MBMesquite::TUntangleMu::mBaseMetric [private] |
Definition at line 53 of file TUntangleMu.hpp.
Referenced by eval(), get_name(), grad(), and hess().
double MBMesquite::TUntangleMu::mConstant [private] |
Definition at line 54 of file TUntangleMu.hpp.