MOAB
4.9.3pre
|
Jacobi preconditioner for LeastSquaresConjugateGradient. More...
#include <BasicPreconditioners.h>
Public Member Functions | |
LeastSquareDiagonalPreconditioner () | |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner (const MatType &mat) | |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | analyzePattern (const MatType &) |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | factorize (const MatType &mat) |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | compute (const MatType &mat) |
ComputationInfo | info () |
Private Types | |
typedef _Scalar | Scalar |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef DiagonalPreconditioner < _Scalar > | Base |
Jacobi preconditioner for LeastSquaresConjugateGradient.
This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
(A.adjoint() * A).diagonal().asDiagonal() * x = b
_Scalar | the type of the scalar. |
The diagonal entries are pre-inverted and stored into a dense vector.
Definition at line 128 of file BasicPreconditioners.h.
typedef DiagonalPreconditioner<_Scalar> Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::Base [private] |
Definition at line 132 of file BasicPreconditioners.h.
typedef NumTraits<Scalar>::Real Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::RealScalar [private] |
Definition at line 131 of file BasicPreconditioners.h.
typedef _Scalar Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::Scalar [private] |
Reimplemented from Eigen::DiagonalPreconditioner< _Scalar >.
Definition at line 130 of file BasicPreconditioners.h.
Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::LeastSquareDiagonalPreconditioner | ( | ) | [inline] |
Definition at line 136 of file BasicPreconditioners.h.
: Base() {}
Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::LeastSquareDiagonalPreconditioner | ( | const MatType & | mat | ) | [inline, explicit] |
Definition at line 139 of file BasicPreconditioners.h.
LeastSquareDiagonalPreconditioner& Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::analyzePattern | ( | const MatType & | ) | [inline] |
Reimplemented from Eigen::DiagonalPreconditioner< _Scalar >.
Definition at line 145 of file BasicPreconditioners.h.
{ return *this; }
LeastSquareDiagonalPreconditioner& Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::compute | ( | const MatType & | mat | ) | [inline] |
Reimplemented from Eigen::DiagonalPreconditioner< _Scalar >.
Definition at line 168 of file BasicPreconditioners.h.
{ return factorize(mat); }
LeastSquareDiagonalPreconditioner& Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::factorize | ( | const MatType & | mat | ) | [inline] |
Reimplemented from Eigen::DiagonalPreconditioner< _Scalar >.
Definition at line 151 of file BasicPreconditioners.h.
{ // Compute the inverse squared-norm of each column of mat m_invdiag.resize(mat.cols()); for(Index j=0; j<mat.outerSize(); ++j) { RealScalar sum = mat.innerVector(j).squaredNorm(); if(sum>0) m_invdiag(j) = RealScalar(1)/sum; else m_invdiag(j) = RealScalar(1); } Base::m_isInitialized = true; return *this; }
ComputationInfo Eigen::LeastSquareDiagonalPreconditioner< _Scalar >::info | ( | ) | [inline] |
Reimplemented from Eigen::DiagonalPreconditioner< _Scalar >.
Definition at line 173 of file BasicPreconditioners.h.
{ return Success; }