MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include <AWSizeNB1.hpp>
Public Member Functions | |
virtual MESQUITE_EXPORT | ~AWSizeNB1 () |
virtual MESQUITE_EXPORT std::string | get_name () const |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqError &err) |
Evaluate \(\mu(A,W)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqMatrix< 2, 2 > &deriv_wrt_A, MsqError &err) |
Gradient of \(\mu(A,W)\) with respect to components of A. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqMatrix< 2, 2 > &deriv_wrt_A, MsqMatrix< 2, 2 > second_wrt_A[3], MsqError &err) |
Hessian of \(\mu(A,W)\) with respect to components of A. | |
virtual MESQUITE_EXPORT bool | evaluate (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqError &err) |
Evaluate \(\mu(A,W)\). | |
virtual MESQUITE_EXPORT bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqMatrix< 3, 3 > &deriv_wrt_A, MsqError &err) |
Gradient of \(\mu(A,W)\) with respect to components of A. | |
virtual MESQUITE_EXPORT bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqMatrix< 3, 3 > &deriv_wrt_A, MsqMatrix< 3, 3 > second_wrt_A[6], MsqError &err) |
Hessian of \(\mu(A,W)\) with respect to components of A. |
\( (\alpha - \omega)^2 \)
Definition at line 42 of file AWSizeNB1.hpp.
MBMesquite::AWSizeNB1::~AWSizeNB1 | ( | ) | [virtual] |
Definition at line 46 of file AWSizeNB1.cpp.
{}
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(A,W)\).
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
Reimplemented from MBMesquite::AWMetric.
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqError & | err | ||
) | [virtual] |
Evaluate \(\mu(A,W)\).
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
Reimplemented from MBMesquite::AWMetric.
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_A, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(A,W)\) with respect to components of A.
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_A, | ||
MsqError & | err | ||
) | [virtual] |
Gradient of \(\mu(A,W)\) with respect to components of A.
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} & \frac{\partial\mu}{\partial A_{0,2}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} & \frac{\partial\mu}{\partial A_{1,2}} \\ \frac{\partial\mu}{\partial A_{2,0}} & \frac{\partial\mu}{\partial A_{2,1}} & \frac{\partial\mu}{\partial A_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_A, | ||
MsqMatrix< 2, 2 > | second_wrt_A[3], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(A,W)\) with respect to components of A.
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. |
second_wrt_A | Output: 4x4 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 2x2 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_A, | ||
MsqMatrix< 3, 3 > | second_wrt_A[6], | ||
MsqError & | err | ||
) | [virtual] |
Hessian of \(\mu(A,W)\) with respect to components of A.
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. |
second_wrt_A | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}^2} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,2}^2} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}^2} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,1}^2} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
std::string MBMesquite::AWSizeNB1::get_name | ( | ) | const [virtual] |
Reimplemented from MBMesquite::AWMetricNonBarrier.
Definition at line 41 of file AWSizeNB1.cpp.
{ return "AWSizeNB1"; }