MOAB: Mesh Oriented datABase  (version 5.4.1)
MBMesquite::AWSizeNB1 Class Reference

#include <AWSizeNB1.hpp>

+ Inheritance diagram for MBMesquite::AWSizeNB1:
+ Collaboration diagram for MBMesquite::AWSizeNB1:

Public Member Functions

virtual MESQUITE_EXPORT ~AWSizeNB1 ()
virtual MESQUITE_EXPORT std::string get_name () const
virtual MESQUITE_EXPORT bool evaluate (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqError &err)
 Evaluate \(\mu(A,W)\).
virtual MESQUITE_EXPORT bool evaluate_with_grad (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqMatrix< 2, 2 > &deriv_wrt_A, MsqError &err)
 Gradient of \(\mu(A,W)\) with respect to components of A.
virtual MESQUITE_EXPORT bool evaluate_with_hess (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqMatrix< 2, 2 > &deriv_wrt_A, MsqMatrix< 2, 2 > second_wrt_A[3], MsqError &err)
 Hessian of \(\mu(A,W)\) with respect to components of A.
virtual MESQUITE_EXPORT bool evaluate (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqError &err)
 Evaluate \(\mu(A,W)\).
virtual MESQUITE_EXPORT bool evaluate_with_grad (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqMatrix< 3, 3 > &deriv_wrt_A, MsqError &err)
 Gradient of \(\mu(A,W)\) with respect to components of A.
virtual MESQUITE_EXPORT bool evaluate_with_hess (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqMatrix< 3, 3 > &deriv_wrt_A, MsqMatrix< 3, 3 > second_wrt_A[6], MsqError &err)
 Hessian of \(\mu(A,W)\) with respect to components of A.

Detailed Description

\( (\alpha - \omega)^2 \)

Definition at line 42 of file AWSizeNB1.hpp.


Constructor & Destructor Documentation

Definition at line 46 of file AWSizeNB1.cpp.

{}

Member Function Documentation

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate ( const MsqMatrix< 2, 2 > &  A,
const MsqMatrix< 2, 2 > &  W,
double &  result,
MsqError err 
) [virtual]

Evaluate \(\mu(A,W)\).

Parameters:
A2x2 active matrix
W2x2 target matrix
resultOutput: value of function
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate ( const MsqMatrix< 3, 3 > &  A,
const MsqMatrix< 3, 3 > &  W,
double &  result,
MsqError err 
) [virtual]

Evaluate \(\mu(A,W)\).

Parameters:
A3x3 active matrix
W3x3 target matrix
resultOutput: value of function
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_grad ( const MsqMatrix< 2, 2 > &  A,
const MsqMatrix< 2, 2 > &  W,
double &  result,
MsqMatrix< 2, 2 > &  deriv_wrt_A,
MsqError err 
) [virtual]

Gradient of \(\mu(A,W)\) with respect to components of A.

Parameters:
A2x2 active matrix
W2x2 target matrix
resultOutput: value of function
deriv_wrt_AOutput: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A.

\[\left[\begin{array}{cc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_grad ( const MsqMatrix< 3, 3 > &  A,
const MsqMatrix< 3, 3 > &  W,
double &  result,
MsqMatrix< 3, 3 > &  deriv_wrt_A,
MsqError err 
) [virtual]

Gradient of \(\mu(A,W)\) with respect to components of A.

Parameters:
A3x3 active matrix
W3x3 target matrix
resultOutput: value of function
deriv_wrt_AOutput: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A.

\[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} & \frac{\partial\mu}{\partial A_{0,2}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} & \frac{\partial\mu}{\partial A_{1,2}} \\ \frac{\partial\mu}{\partial A_{2,0}} & \frac{\partial\mu}{\partial A_{2,1}} & \frac{\partial\mu}{\partial A_{2,2}} \end{array}\right]\]

Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_hess ( const MsqMatrix< 2, 2 > &  A,
const MsqMatrix< 2, 2 > &  W,
double &  result,
MsqMatrix< 2, 2 > &  deriv_wrt_A,
MsqMatrix< 2, 2 >  second_wrt_A[3],
MsqError err 
) [virtual]

Hessian of \(\mu(A,W)\) with respect to components of A.

Parameters:
A2x2 active matrix
W2x2 target matrix
resultOutput: value of function
deriv_wrt_AOutput: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A.
second_wrt_AOutput: 4x4 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 2x2 blocks and only the upper diagonal blocks, in row-major order, are returned.

\[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

virtual MESQUITE_EXPORT bool MBMesquite::AWSizeNB1::evaluate_with_hess ( const MsqMatrix< 3, 3 > &  A,
const MsqMatrix< 3, 3 > &  W,
double &  result,
MsqMatrix< 3, 3 > &  deriv_wrt_A,
MsqMatrix< 3, 3 >  second_wrt_A[6],
MsqError err 
) [virtual]

Hessian of \(\mu(A,W)\) with respect to components of A.

Parameters:
A3x3 active matrix
W3x3 target matrix
resultOutput: value of function
deriv_wrt_AOutput: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A.
second_wrt_AOutput: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned.

\[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}^2} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,2}^2} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}^2} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,1}^2} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,2}^2} \\ \end{array}\right]\]

Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

std::string MBMesquite::AWSizeNB1::get_name ( ) const [virtual]

Reimplemented from MBMesquite::AWMetricNonBarrier.

Definition at line 41 of file AWSizeNB1.cpp.

{
    return "AWSizeNB1";
}

List of all members.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines