MOAB
4.9.3pre
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2009-2010 Gael Guennebaud <[email protected]> 00005 // 00006 // This Source Code Form is subject to the terms of the Mozilla 00007 // Public License v. 2.0. If a copy of the MPL was not distributed 00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00009 00010 #ifndef EIGEN_BLASUTIL_H 00011 #define EIGEN_BLASUTIL_H 00012 00013 // This file contains many lightweight helper classes used to 00014 // implement and control fast level 2 and level 3 BLAS-like routines. 00015 00016 namespace Eigen { 00017 00018 namespace internal { 00019 00020 // forward declarations 00021 template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false> 00022 struct gebp_kernel; 00023 00024 template<typename Scalar, typename Index, typename DataMapper, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false> 00025 struct gemm_pack_rhs; 00026 00027 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false> 00028 struct gemm_pack_lhs; 00029 00030 template< 00031 typename Index, 00032 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 00033 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, 00034 int ResStorageOrder> 00035 struct general_matrix_matrix_product; 00036 00037 template<typename Index, 00038 typename LhsScalar, typename LhsMapper, int LhsStorageOrder, bool ConjugateLhs, 00039 typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version=Specialized> 00040 struct general_matrix_vector_product; 00041 00042 00043 template<bool Conjugate> struct conj_if; 00044 00045 template<> struct conj_if<true> { 00046 template<typename T> 00047 inline T operator()(const T& x) { return numext::conj(x); } 00048 template<typename T> 00049 inline T pconj(const T& x) { return internal::pconj(x); } 00050 }; 00051 00052 template<> struct conj_if<false> { 00053 template<typename T> 00054 inline const T& operator()(const T& x) { return x; } 00055 template<typename T> 00056 inline const T& pconj(const T& x) { return x; } 00057 }; 00058 00059 template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false> 00060 { 00061 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); } 00062 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); } 00063 }; 00064 00065 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true> 00066 { 00067 typedef std::complex<RealScalar> Scalar; 00068 EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const 00069 { return c + pmul(x,y); } 00070 00071 EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const 00072 { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); } 00073 }; 00074 00075 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false> 00076 { 00077 typedef std::complex<RealScalar> Scalar; 00078 EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const 00079 { return c + pmul(x,y); } 00080 00081 EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const 00082 { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } 00083 }; 00084 00085 template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true> 00086 { 00087 typedef std::complex<RealScalar> Scalar; 00088 EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const 00089 { return c + pmul(x,y); } 00090 00091 EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const 00092 { return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } 00093 }; 00094 00095 template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false> 00096 { 00097 typedef std::complex<RealScalar> Scalar; 00098 EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const 00099 { return padd(c, pmul(x,y)); } 00100 EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const 00101 { return conj_if<Conj>()(x)*y; } 00102 }; 00103 00104 template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj> 00105 { 00106 typedef std::complex<RealScalar> Scalar; 00107 EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const 00108 { return padd(c, pmul(x,y)); } 00109 EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const 00110 { return x*conj_if<Conj>()(y); } 00111 }; 00112 00113 template<typename From,typename To> struct get_factor { 00114 EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return x; } 00115 }; 00116 00117 template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> { 00118 EIGEN_DEVICE_FUNC 00119 static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return numext::real(x); } 00120 }; 00121 00122 00123 template<typename Scalar, typename Index> 00124 class BlasVectorMapper { 00125 public: 00126 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {} 00127 00128 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { 00129 return m_data[i]; 00130 } 00131 template <typename Packet, int AlignmentType> 00132 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { 00133 return ploadt<Packet, AlignmentType>(m_data + i); 00134 } 00135 00136 template <typename Packet> 00137 EIGEN_DEVICE_FUNC bool aligned(Index i) const { 00138 return (size_t(m_data+i)%sizeof(Packet))==0; 00139 } 00140 00141 protected: 00142 Scalar* m_data; 00143 }; 00144 00145 template<typename Scalar, typename Index, int AlignmentType> 00146 class BlasLinearMapper { 00147 public: 00148 typedef typename packet_traits<Scalar>::type Packet; 00149 typedef typename packet_traits<Scalar>::half HalfPacket; 00150 00151 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data) : m_data(data) {} 00152 00153 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { 00154 internal::prefetch(&operator()(i)); 00155 } 00156 00157 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { 00158 return m_data[i]; 00159 } 00160 00161 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const { 00162 return ploadt<Packet, AlignmentType>(m_data + i); 00163 } 00164 00165 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const { 00166 return ploadt<HalfPacket, AlignmentType>(m_data + i); 00167 } 00168 00169 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const Packet &p) const { 00170 pstoret<Scalar, Packet, AlignmentType>(m_data + i, p); 00171 } 00172 00173 protected: 00174 Scalar *m_data; 00175 }; 00176 00177 // Lightweight helper class to access matrix coefficients. 00178 template<typename Scalar, typename Index, int StorageOrder, int AlignmentType = Unaligned> 00179 class blas_data_mapper { 00180 public: 00181 typedef typename packet_traits<Scalar>::type Packet; 00182 typedef typename packet_traits<Scalar>::half HalfPacket; 00183 00184 typedef BlasLinearMapper<Scalar, Index, AlignmentType> LinearMapper; 00185 typedef BlasVectorMapper<Scalar, Index> VectorMapper; 00186 00187 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {} 00188 00189 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType> 00190 getSubMapper(Index i, Index j) const { 00191 return blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType>(&operator()(i, j), m_stride); 00192 } 00193 00194 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { 00195 return LinearMapper(&operator()(i, j)); 00196 } 00197 00198 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { 00199 return VectorMapper(&operator()(i, j)); 00200 } 00201 00202 00203 EIGEN_DEVICE_FUNC 00204 EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { 00205 return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; 00206 } 00207 00208 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const { 00209 return ploadt<Packet, AlignmentType>(&operator()(i, j)); 00210 } 00211 00212 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i, Index j) const { 00213 return ploadt<HalfPacket, AlignmentType>(&operator()(i, j)); 00214 } 00215 00216 template<typename SubPacket> 00217 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { 00218 pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride); 00219 } 00220 00221 template<typename SubPacket> 00222 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { 00223 return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride); 00224 } 00225 00226 EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } 00227 EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; } 00228 00229 EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { 00230 if (size_t(m_data)%sizeof(Scalar)) { 00231 return -1; 00232 } 00233 return internal::first_default_aligned(m_data, size); 00234 } 00235 00236 protected: 00237 Scalar* EIGEN_RESTRICT m_data; 00238 const Index m_stride; 00239 }; 00240 00241 // lightweight helper class to access matrix coefficients (const version) 00242 template<typename Scalar, typename Index, int StorageOrder> 00243 class const_blas_data_mapper : public blas_data_mapper<const Scalar, Index, StorageOrder> { 00244 public: 00245 EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper<const Scalar, Index, StorageOrder>(data, stride) {} 00246 00247 EIGEN_ALWAYS_INLINE const_blas_data_mapper<Scalar, Index, StorageOrder> getSubMapper(Index i, Index j) const { 00248 return const_blas_data_mapper<Scalar, Index, StorageOrder>(&(this->operator()(i, j)), this->m_stride); 00249 } 00250 }; 00251 00252 00253 /* Helper class to analyze the factors of a Product expression. 00254 * In particular it allows to pop out operator-, scalar multiples, 00255 * and conjugate */ 00256 template<typename XprType> struct blas_traits 00257 { 00258 typedef typename traits<XprType>::Scalar Scalar; 00259 typedef const XprType& ExtractType; 00260 typedef XprType _ExtractType; 00261 enum { 00262 IsComplex = NumTraits<Scalar>::IsComplex, 00263 IsTransposed = false, 00264 NeedToConjugate = false, 00265 HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) 00266 && ( bool(XprType::IsVectorAtCompileTime) 00267 || int(inner_stride_at_compile_time<XprType>::ret) == 1) 00268 ) ? 1 : 0 00269 }; 00270 typedef typename conditional<bool(HasUsableDirectAccess), 00271 ExtractType, 00272 typename _ExtractType::PlainObject 00273 >::type DirectLinearAccessType; 00274 static inline ExtractType extract(const XprType& x) { return x; } 00275 static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } 00276 }; 00277 00278 // pop conjugate 00279 template<typename Scalar, typename NestedXpr> 00280 struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> > 00281 : blas_traits<NestedXpr> 00282 { 00283 typedef blas_traits<NestedXpr> Base; 00284 typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType; 00285 typedef typename Base::ExtractType ExtractType; 00286 00287 enum { 00288 IsComplex = NumTraits<Scalar>::IsComplex, 00289 NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex 00290 }; 00291 static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } 00292 static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } 00293 }; 00294 00295 // pop scalar multiple 00296 template<typename Scalar, typename NestedXpr> 00297 struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> > 00298 : blas_traits<NestedXpr> 00299 { 00300 typedef blas_traits<NestedXpr> Base; 00301 typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType; 00302 typedef typename Base::ExtractType ExtractType; 00303 static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } 00304 static inline Scalar extractScalarFactor(const XprType& x) 00305 { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); } 00306 }; 00307 00308 // pop opposite 00309 template<typename Scalar, typename NestedXpr> 00310 struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> > 00311 : blas_traits<NestedXpr> 00312 { 00313 typedef blas_traits<NestedXpr> Base; 00314 typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType; 00315 typedef typename Base::ExtractType ExtractType; 00316 static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } 00317 static inline Scalar extractScalarFactor(const XprType& x) 00318 { return - Base::extractScalarFactor(x.nestedExpression()); } 00319 }; 00320 00321 // pop/push transpose 00322 template<typename NestedXpr> 00323 struct blas_traits<Transpose<NestedXpr> > 00324 : blas_traits<NestedXpr> 00325 { 00326 typedef typename NestedXpr::Scalar Scalar; 00327 typedef blas_traits<NestedXpr> Base; 00328 typedef Transpose<NestedXpr> XprType; 00329 typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS 00330 typedef Transpose<const typename Base::_ExtractType> _ExtractType; 00331 typedef typename conditional<bool(Base::HasUsableDirectAccess), 00332 ExtractType, 00333 typename ExtractType::PlainObject 00334 >::type DirectLinearAccessType; 00335 enum { 00336 IsTransposed = Base::IsTransposed ? 0 : 1 00337 }; 00338 static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } 00339 static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } 00340 }; 00341 00342 template<typename T> 00343 struct blas_traits<const T> 00344 : blas_traits<T> 00345 {}; 00346 00347 template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess> 00348 struct extract_data_selector { 00349 static const typename T::Scalar* run(const T& m) 00350 { 00351 return blas_traits<T>::extract(m).data(); 00352 } 00353 }; 00354 00355 template<typename T> 00356 struct extract_data_selector<T,false> { 00357 static typename T::Scalar* run(const T&) { return 0; } 00358 }; 00359 00360 template<typename T> const typename T::Scalar* extract_data(const T& m) 00361 { 00362 return extract_data_selector<T>::run(m); 00363 } 00364 00365 } // end namespace internal 00366 00367 } // end namespace Eigen 00368 00369 #endif // EIGEN_BLASUTIL_H