MOAB  4.9.3pre
SelfadjointMatrixMatrix.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Gael Guennebaud <[email protected]>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00011 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 // pack a selfadjoint block diagonal for use with the gebp_kernel
00018 template<typename Scalar, typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
00019 struct symm_pack_lhs
00020 {
00021   template<int BlockRows> inline
00022   void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
00023   {
00024     // normal copy
00025     for(Index k=0; k<i; k++)
00026       for(Index w=0; w<BlockRows; w++)
00027         blockA[count++] = lhs(i+w,k);           // normal
00028     // symmetric copy
00029     Index h = 0;
00030     for(Index k=i; k<i+BlockRows; k++)
00031     {
00032       for(Index w=0; w<h; w++)
00033         blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
00034 
00035       blockA[count++] = numext::real(lhs(k,k));   // real (diagonal)
00036 
00037       for(Index w=h+1; w<BlockRows; w++)
00038         blockA[count++] = lhs(i+w, k);          // normal
00039       ++h;
00040     }
00041     // transposed copy
00042     for(Index k=i+BlockRows; k<cols; k++)
00043       for(Index w=0; w<BlockRows; w++)
00044         blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
00045   }
00046   void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
00047   {
00048     enum { PacketSize = packet_traits<Scalar>::size };
00049     const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
00050     Index count = 0;
00051     //Index peeled_mc3 = (rows/Pack1)*Pack1;
00052     
00053     const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
00054     const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
00055     const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
00056     
00057     if(Pack1>=3*PacketSize)
00058       for(Index i=0; i<peeled_mc3; i+=3*PacketSize)
00059         pack<3*PacketSize>(blockA, lhs, cols, i, count);
00060     
00061     if(Pack1>=2*PacketSize)
00062       for(Index i=peeled_mc3; i<peeled_mc2; i+=2*PacketSize)
00063         pack<2*PacketSize>(blockA, lhs, cols, i, count);
00064     
00065     if(Pack1>=1*PacketSize)
00066       for(Index i=peeled_mc2; i<peeled_mc1; i+=1*PacketSize)
00067         pack<1*PacketSize>(blockA, lhs, cols, i, count);
00068 
00069     // do the same with mr==1
00070     for(Index i=peeled_mc1; i<rows; i++)
00071     {
00072       for(Index k=0; k<i; k++)
00073         blockA[count++] = lhs(i, k);                   // normal
00074 
00075       blockA[count++] = numext::real(lhs(i, i));       // real (diagonal)
00076 
00077       for(Index k=i+1; k<cols; k++)
00078         blockA[count++] = numext::conj(lhs(k, i));     // transposed
00079     }
00080   }
00081 };
00082 
00083 template<typename Scalar, typename Index, int nr, int StorageOrder>
00084 struct symm_pack_rhs
00085 {
00086   enum { PacketSize = packet_traits<Scalar>::size };
00087   void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
00088   {
00089     Index end_k = k2 + rows;
00090     Index count = 0;
00091     const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
00092     Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
00093     Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
00094 
00095     // first part: normal case
00096     for(Index j2=0; j2<k2; j2+=nr)
00097     {
00098       for(Index k=k2; k<end_k; k++)
00099       {
00100         blockB[count+0] = rhs(k,j2+0);
00101         blockB[count+1] = rhs(k,j2+1);
00102         if (nr>=4)
00103         {
00104           blockB[count+2] = rhs(k,j2+2);
00105           blockB[count+3] = rhs(k,j2+3);
00106         }
00107         if (nr>=8)
00108         {
00109           blockB[count+4] = rhs(k,j2+4);
00110           blockB[count+5] = rhs(k,j2+5);
00111           blockB[count+6] = rhs(k,j2+6);
00112           blockB[count+7] = rhs(k,j2+7);
00113         }
00114         count += nr;
00115       }
00116     }
00117 
00118     // second part: diagonal block
00119     Index end8 = nr>=8 ? (std::min)(k2+rows,packet_cols8) : k2;
00120     if(nr>=8)
00121     {
00122       for(Index j2=k2; j2<end8; j2+=8)
00123       {
00124         // again we can split vertically in three different parts (transpose, symmetric, normal)
00125         // transpose
00126         for(Index k=k2; k<j2; k++)
00127         {
00128           blockB[count+0] = numext::conj(rhs(j2+0,k));
00129           blockB[count+1] = numext::conj(rhs(j2+1,k));
00130           blockB[count+2] = numext::conj(rhs(j2+2,k));
00131           blockB[count+3] = numext::conj(rhs(j2+3,k));
00132           blockB[count+4] = numext::conj(rhs(j2+4,k));
00133           blockB[count+5] = numext::conj(rhs(j2+5,k));
00134           blockB[count+6] = numext::conj(rhs(j2+6,k));
00135           blockB[count+7] = numext::conj(rhs(j2+7,k));
00136           count += 8;
00137         }
00138         // symmetric
00139         Index h = 0;
00140         for(Index k=j2; k<j2+8; k++)
00141         {
00142           // normal
00143           for (Index w=0 ; w<h; ++w)
00144             blockB[count+w] = rhs(k,j2+w);
00145 
00146           blockB[count+h] = numext::real(rhs(k,k));
00147 
00148           // transpose
00149           for (Index w=h+1 ; w<8; ++w)
00150             blockB[count+w] = numext::conj(rhs(j2+w,k));
00151           count += 8;
00152           ++h;
00153         }
00154         // normal
00155         for(Index k=j2+8; k<end_k; k++)
00156         {
00157           blockB[count+0] = rhs(k,j2+0);
00158           blockB[count+1] = rhs(k,j2+1);
00159           blockB[count+2] = rhs(k,j2+2);
00160           blockB[count+3] = rhs(k,j2+3);
00161           blockB[count+4] = rhs(k,j2+4);
00162           blockB[count+5] = rhs(k,j2+5);
00163           blockB[count+6] = rhs(k,j2+6);
00164           blockB[count+7] = rhs(k,j2+7);
00165           count += 8;
00166         }
00167       }
00168     }
00169     if(nr>=4)
00170     {
00171       for(Index j2=end8; j2<(std::min)(k2+rows,packet_cols4); j2+=4)
00172       {
00173         // again we can split vertically in three different parts (transpose, symmetric, normal)
00174         // transpose
00175         for(Index k=k2; k<j2; k++)
00176         {
00177           blockB[count+0] = numext::conj(rhs(j2+0,k));
00178           blockB[count+1] = numext::conj(rhs(j2+1,k));
00179           blockB[count+2] = numext::conj(rhs(j2+2,k));
00180           blockB[count+3] = numext::conj(rhs(j2+3,k));
00181           count += 4;
00182         }
00183         // symmetric
00184         Index h = 0;
00185         for(Index k=j2; k<j2+4; k++)
00186         {
00187           // normal
00188           for (Index w=0 ; w<h; ++w)
00189             blockB[count+w] = rhs(k,j2+w);
00190 
00191           blockB[count+h] = numext::real(rhs(k,k));
00192 
00193           // transpose
00194           for (Index w=h+1 ; w<4; ++w)
00195             blockB[count+w] = numext::conj(rhs(j2+w,k));
00196           count += 4;
00197           ++h;
00198         }
00199         // normal
00200         for(Index k=j2+4; k<end_k; k++)
00201         {
00202           blockB[count+0] = rhs(k,j2+0);
00203           blockB[count+1] = rhs(k,j2+1);
00204           blockB[count+2] = rhs(k,j2+2);
00205           blockB[count+3] = rhs(k,j2+3);
00206           count += 4;
00207         }
00208       }
00209     }
00210 
00211     // third part: transposed
00212     if(nr>=8)
00213     {
00214       for(Index j2=k2+rows; j2<packet_cols8; j2+=8)
00215       {
00216         for(Index k=k2; k<end_k; k++)
00217         {
00218           blockB[count+0] = numext::conj(rhs(j2+0,k));
00219           blockB[count+1] = numext::conj(rhs(j2+1,k));
00220           blockB[count+2] = numext::conj(rhs(j2+2,k));
00221           blockB[count+3] = numext::conj(rhs(j2+3,k));
00222           blockB[count+4] = numext::conj(rhs(j2+4,k));
00223           blockB[count+5] = numext::conj(rhs(j2+5,k));
00224           blockB[count+6] = numext::conj(rhs(j2+6,k));
00225           blockB[count+7] = numext::conj(rhs(j2+7,k));
00226           count += 8;
00227         }
00228       }
00229     }
00230     if(nr>=4)
00231     {
00232       for(Index j2=(std::max)(packet_cols8,k2+rows); j2<packet_cols4; j2+=4)
00233       {
00234         for(Index k=k2; k<end_k; k++)
00235         {
00236           blockB[count+0] = numext::conj(rhs(j2+0,k));
00237           blockB[count+1] = numext::conj(rhs(j2+1,k));
00238           blockB[count+2] = numext::conj(rhs(j2+2,k));
00239           blockB[count+3] = numext::conj(rhs(j2+3,k));
00240           count += 4;
00241         }
00242       }
00243     }
00244 
00245     // copy the remaining columns one at a time (=> the same with nr==1)
00246     for(Index j2=packet_cols4; j2<cols; ++j2)
00247     {
00248       // transpose
00249       Index half = (std::min)(end_k,j2);
00250       for(Index k=k2; k<half; k++)
00251       {
00252         blockB[count] = numext::conj(rhs(j2,k));
00253         count += 1;
00254       }
00255 
00256       if(half==j2 && half<k2+rows)
00257       {
00258         blockB[count] = numext::real(rhs(j2,j2));
00259         count += 1;
00260       }
00261       else
00262         half--;
00263 
00264       // normal
00265       for(Index k=half+1; k<k2+rows; k++)
00266       {
00267         blockB[count] = rhs(k,j2);
00268         count += 1;
00269       }
00270     }
00271   }
00272 };
00273 
00274 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
00275  * the general matrix matrix product.
00276  */
00277 template <typename Scalar, typename Index,
00278           int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00279           int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
00280           int ResStorageOrder>
00281 struct product_selfadjoint_matrix;
00282 
00283 template <typename Scalar, typename Index,
00284           int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
00285           int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
00286 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
00287 {
00288 
00289   static EIGEN_STRONG_INLINE void run(
00290     Index rows, Index cols,
00291     const Scalar* lhs, Index lhsStride,
00292     const Scalar* rhs, Index rhsStride,
00293     Scalar* res,       Index resStride,
00294     const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
00295   {
00296     product_selfadjoint_matrix<Scalar, Index,
00297       EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00298       RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
00299       EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
00300       LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
00301       ColMajor>
00302       ::run(cols, rows,  rhs, rhsStride,  lhs, lhsStride,  res, resStride,  alpha, blocking);
00303   }
00304 };
00305 
00306 template <typename Scalar, typename Index,
00307           int LhsStorageOrder, bool ConjugateLhs,
00308           int RhsStorageOrder, bool ConjugateRhs>
00309 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
00310 {
00311 
00312   static EIGEN_DONT_INLINE void run(
00313     Index rows, Index cols,
00314     const Scalar* _lhs, Index lhsStride,
00315     const Scalar* _rhs, Index rhsStride,
00316     Scalar* res,        Index resStride,
00317     const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
00318 };
00319 
00320 template <typename Scalar, typename Index,
00321           int LhsStorageOrder, bool ConjugateLhs,
00322           int RhsStorageOrder, bool ConjugateRhs>
00323 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>::run(
00324     Index rows, Index cols,
00325     const Scalar* _lhs, Index lhsStride,
00326     const Scalar* _rhs, Index rhsStride,
00327     Scalar* _res,        Index resStride,
00328     const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
00329   {
00330     Index size = rows;
00331 
00332     typedef gebp_traits<Scalar,Scalar> Traits;
00333 
00334     typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
00335     typedef const_blas_data_mapper<Scalar, Index, (LhsStorageOrder == RowMajor) ? ColMajor : RowMajor> LhsTransposeMapper;
00336     typedef const_blas_data_mapper<Scalar, Index, RhsStorageOrder> RhsMapper;
00337     typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
00338     LhsMapper lhs(_lhs,lhsStride);
00339     LhsTransposeMapper lhs_transpose(_lhs,lhsStride);
00340     RhsMapper rhs(_rhs,rhsStride);
00341     ResMapper res(_res, resStride);
00342 
00343     Index kc = blocking.kc();                   // cache block size along the K direction
00344     Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
00345     // kc must be smaller than mc
00346     kc = (std::min)(kc,mc);
00347     std::size_t sizeA = kc*mc;
00348     std::size_t sizeB = kc*cols;
00349     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
00350     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
00351 
00352     gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00353     symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00354     gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr,RhsStorageOrder> pack_rhs;
00355     gemm_pack_lhs<Scalar, Index, LhsTransposeMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;
00356 
00357     for(Index k2=0; k2<size; k2+=kc)
00358     {
00359       const Index actual_kc = (std::min)(k2+kc,size)-k2;
00360 
00361       // we have selected one row panel of rhs and one column panel of lhs
00362       // pack rhs's panel into a sequential chunk of memory
00363       // and expand each coeff to a constant packet for further reuse
00364       pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, cols);
00365 
00366       // the select lhs's panel has to be split in three different parts:
00367       //  1 - the transposed panel above the diagonal block => transposed packed copy
00368       //  2 - the diagonal block => special packed copy
00369       //  3 - the panel below the diagonal block => generic packed copy
00370       for(Index i2=0; i2<k2; i2+=mc)
00371       {
00372         const Index actual_mc = (std::min)(i2+mc,k2)-i2;
00373         // transposed packed copy
00374         pack_lhs_transposed(blockA, lhs_transpose.getSubMapper(i2, k2), actual_kc, actual_mc);
00375 
00376         gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
00377       }
00378       // the block diagonal
00379       {
00380         const Index actual_mc = (std::min)(k2+kc,size)-k2;
00381         // symmetric packed copy
00382         pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
00383 
00384         gebp_kernel(res.getSubMapper(k2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
00385       }
00386 
00387       for(Index i2=k2+kc; i2<size; i2+=mc)
00388       {
00389         const Index actual_mc = (std::min)(i2+mc,size)-i2;
00390         gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
00391           (blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
00392 
00393         gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
00394       }
00395     }
00396   }
00397 
00398 // matrix * selfadjoint product
00399 template <typename Scalar, typename Index,
00400           int LhsStorageOrder, bool ConjugateLhs,
00401           int RhsStorageOrder, bool ConjugateRhs>
00402 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
00403 {
00404 
00405   static EIGEN_DONT_INLINE void run(
00406     Index rows, Index cols,
00407     const Scalar* _lhs, Index lhsStride,
00408     const Scalar* _rhs, Index rhsStride,
00409     Scalar* res,        Index resStride,
00410     const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
00411 };
00412 
00413 template <typename Scalar, typename Index,
00414           int LhsStorageOrder, bool ConjugateLhs,
00415           int RhsStorageOrder, bool ConjugateRhs>
00416 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>::run(
00417     Index rows, Index cols,
00418     const Scalar* _lhs, Index lhsStride,
00419     const Scalar* _rhs, Index rhsStride,
00420     Scalar* _res,        Index resStride,
00421     const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
00422   {
00423     Index size = cols;
00424 
00425     typedef gebp_traits<Scalar,Scalar> Traits;
00426 
00427     typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
00428     typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
00429     LhsMapper lhs(_lhs,lhsStride);
00430     ResMapper res(_res,resStride);
00431 
00432     Index kc = blocking.kc();                   // cache block size along the K direction
00433     Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
00434     std::size_t sizeA = kc*mc;
00435     std::size_t sizeB = kc*cols;
00436     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
00437     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
00438 
00439     gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
00440     gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00441     symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
00442 
00443     for(Index k2=0; k2<size; k2+=kc)
00444     {
00445       const Index actual_kc = (std::min)(k2+kc,size)-k2;
00446 
00447       pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
00448 
00449       // => GEPP
00450       for(Index i2=0; i2<rows; i2+=mc)
00451       {
00452         const Index actual_mc = (std::min)(i2+mc,rows)-i2;
00453         pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
00454 
00455         gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
00456       }
00457     }
00458   }
00459 
00460 } // end namespace internal
00461 
00462 /***************************************************************************
00463 * Wrapper to product_selfadjoint_matrix
00464 ***************************************************************************/
00465 
00466 namespace internal {
00467   
00468 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
00469 struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,RhsMode,false>
00470 {
00471   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
00472   
00473   typedef internal::blas_traits<Lhs> LhsBlasTraits;
00474   typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
00475   typedef internal::blas_traits<Rhs> RhsBlasTraits;
00476   typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
00477   
00478   enum {
00479     LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
00480     LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
00481     RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
00482     RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
00483   };
00484   
00485   template<typename Dest>
00486   static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
00487   {
00488     eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
00489 
00490     typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
00491     typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
00492 
00493     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
00494                                * RhsBlasTraits::extractScalarFactor(a_rhs);
00495 
00496     typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
00497               Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,1> BlockingType;
00498 
00499     BlockingType blocking(lhs.rows(), rhs.cols(), lhs.cols(), 1, false);
00500 
00501     internal::product_selfadjoint_matrix<Scalar, Index,
00502       EIGEN_LOGICAL_XOR(LhsIsUpper,internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
00503       NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
00504       EIGEN_LOGICAL_XOR(RhsIsUpper,internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
00505       NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
00506       internal::traits<Dest>::Flags&RowMajorBit  ? RowMajor : ColMajor>
00507       ::run(
00508         lhs.rows(), rhs.cols(),                 // sizes
00509         &lhs.coeffRef(0,0), lhs.outerStride(),  // lhs info
00510         &rhs.coeffRef(0,0), rhs.outerStride(),  // rhs info
00511         &dst.coeffRef(0,0), dst.outerStride(),  // result info
00512         actualAlpha, blocking                   // alpha
00513       );
00514   }
00515 };
00516 
00517 } // end namespace internal
00518 
00519 } // end namespace Eigen
00520 
00521 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines