MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2010 Sandia National Laboratories. Developed at the 00005 University of Wisconsin--Madison under SNL contract number 00006 624796. The U.S. Government and the University of Wisconsin 00007 retain certain rights to this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2010) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 /** \file DomainUtil.cpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #include "Mesquite.hpp" 00033 #include "DomainUtil.hpp" 00034 #include "MeshInterface.hpp" 00035 #include "MsqVertex.hpp" 00036 #include "MsqError.hpp" 00037 00038 namespace MBMesquite 00039 { 00040 namespace DomainUtil 00041 { 00042 00043 void bounding_box( const MsqVertex* coords, size_t num_coords, Vector3D& min, Vector3D& max ) 00044 { 00045 min = max = coords[0]; 00046 for( size_t i = 1; i < num_coords; ++i ) 00047 { 00048 for( int j = 0; j < 3; ++j ) 00049 { 00050 if( coords[i][j] < min[j] ) min[j] = coords[i][j]; 00051 if( coords[i][j] > max[j] ) max[j] = coords[i][j]; 00052 } 00053 } 00054 } 00055 00056 double max_box_extent( const MsqVertex* vertex_array, size_t num_vertices ) 00057 { 00058 Vector3D min, max; 00059 bounding_box( vertex_array, num_vertices, min, max ); 00060 max -= min; 00061 return ( max[0] >= max[1] && max[0] >= max[2] ) ? max[0] : ( max[1] >= max[2] ) ? max[1] : max[2]; 00062 } 00063 00064 void get_fixed_vertices( Mesh* mesh, 00065 const Mesh::VertexHandle* verts, 00066 size_t num_verts, 00067 std::vector< Mesh::VertexHandle >& fixed_verts, 00068 MsqError& err ) 00069 { 00070 std::vector< bool > fixed( num_verts ); 00071 mesh->vertices_get_fixed_flag( verts, fixed, num_verts, err );MSQ_ERRRTN( err ); 00072 for( size_t i = 0; i < num_verts; ++i ) 00073 if( fixed[i] ) fixed_verts.push_back( verts[i] ); 00074 } 00075 00076 bool non_colinear_vertices( const MsqVertex* verts, size_t num_verts, Vector3D coords_out[3], double epsilon ) 00077 { 00078 // This function will attempt to find trhee non-colinear 00079 // vertices from the input list. Further, it will attempt 00080 // to select three such vertices that are relatively far 00081 // apart so as to minimize rounding error in any calculation 00082 // using the results of this function. 00083 00084 // Non-colinear, by definition, must be at least trhee unique points. 00085 if( num_verts < 3 ) return false; 00086 00087 // Begin with the first input vertex 00088 size_t first_idx = 0; 00089 00090 // Choose the vertex furthest from the initial one 00091 size_t second_idx = 1; 00092 double dist_sqr = ( verts[first_idx] - verts[second_idx] ).length_squared(); 00093 for( size_t i = 2; i < num_verts; ++i ) 00094 { 00095 double ds = ( verts[second_idx] - verts[i] ).length_squared(); 00096 if( ds > dist_sqr ) 00097 { 00098 dist_sqr = ds; 00099 second_idx = i; 00100 } 00101 } 00102 // fail if all vertices are coincident 00103 if( dist_sqr <= epsilon * epsilon ) return false; 00104 00105 // re-select the first vertex as the one furthest from the second 00106 for( size_t i = 1; i < num_verts; ++i ) 00107 { 00108 double ds = ( verts[second_idx] - verts[i] ).length_squared(); 00109 if( ds > dist_sqr ) 00110 { 00111 dist_sqr = ds; 00112 first_idx = i; 00113 } 00114 } 00115 00116 // select the third vertex as the one furthest from the line formed 00117 // by the first two vertices 00118 Vector3D b = verts[first_idx]; 00119 Vector3D m = verts[second_idx] - b; 00120 Vector3D mx = m * ( 1.0 / m.length_squared() ); 00121 dist_sqr = -1.0; 00122 size_t third_idx = 0; 00123 for( size_t i = 0; i < num_verts; ++i ) 00124 { 00125 double t = mx % ( verts[i] - b ); 00126 double ds = ( ( b + t * m ) - verts[i] ).length_squared(); 00127 if( ds > dist_sqr ) 00128 { 00129 third_idx = i; 00130 dist_sqr = ds; 00131 } 00132 } 00133 // fail if all vertices are colinear 00134 if( dist_sqr <= epsilon * epsilon ) return false; 00135 00136 coords_out[0] = verts[first_idx]; 00137 coords_out[1] = verts[second_idx]; 00138 coords_out[2] = verts[third_idx]; 00139 return true; 00140 } 00141 00142 bool non_coplanar_vertices( const MsqVertex* verts, size_t num_verts, Vector3D coords_out[4], double epsilon ) 00143 { 00144 // This function will attempt to find four non-coplanar 00145 // vertices from the input list. Further, it will attempt 00146 // to select four such vertices that are relatively far 00147 // apart so as to minimize rounding error in any calculation 00148 // using the results of this function. 00149 00150 // Non-coplanar, by definition, must be at least four unique points. 00151 if( num_verts < 4 ) return false; 00152 00153 // Get three non-colinear vertices 00154 if( !non_colinear_vertices( verts, num_verts, coords_out, epsilon ) ) return false; 00155 00156 // The plane of the first three vertices: 00157 Vector3D norm = ( coords_out[1] - coords_out[0] ) * ( coords_out[2] - coords_out[0] ); 00158 norm /= norm.length(); 00159 double d = -( norm % coords_out[0] ); 00160 00161 // Search for the fourth vertex that is furthest from the plane 00162 // of the first three 00163 double dist = -1.0; 00164 for( size_t i = 0; i < num_verts; ++i ) 00165 { 00166 double disti = fabs( norm % verts[i] + d ); 00167 if( disti > dist ) 00168 { 00169 dist = disti; 00170 coords_out[3] = verts[i]; 00171 } 00172 } 00173 00174 // fail if all vertices are colinear 00175 return ( dist > epsilon ); 00176 } 00177 00178 } // namespace DomainUtil 00179 } // namespace MBMesquite