MOAB
4.9.3pre
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2008 Gael Guennebaud <[email protected]> 00005 // Copyright (C) 2010,2012 Jitse Niesen <[email protected]> 00006 // 00007 // This Source Code Form is subject to the terms of the Mozilla 00008 // Public License v. 2.0. If a copy of the MPL was not distributed 00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00010 00011 #ifndef EIGEN_EIGENSOLVER_H 00012 #define EIGEN_EIGENSOLVER_H 00013 00014 #include "./RealSchur.h" 00015 00016 namespace Eigen { 00017 00064 template<typename _MatrixType> class EigenSolver 00065 { 00066 public: 00067 00069 typedef _MatrixType MatrixType; 00070 00071 enum { 00072 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 00073 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 00074 Options = MatrixType::Options, 00075 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 00076 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 00077 }; 00078 00080 typedef typename MatrixType::Scalar Scalar; 00081 typedef typename NumTraits<Scalar>::Real RealScalar; 00082 typedef Eigen::Index Index; 00083 00090 typedef std::complex<RealScalar> ComplexScalar; 00091 00097 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; 00098 00104 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; 00105 00113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} 00114 00121 explicit EigenSolver(Index size) 00122 : m_eivec(size, size), 00123 m_eivalues(size), 00124 m_isInitialized(false), 00125 m_eigenvectorsOk(false), 00126 m_realSchur(size), 00127 m_matT(size, size), 00128 m_tmp(size) 00129 {} 00130 00146 template<typename InputType> 00147 explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) 00148 : m_eivec(matrix.rows(), matrix.cols()), 00149 m_eivalues(matrix.cols()), 00150 m_isInitialized(false), 00151 m_eigenvectorsOk(false), 00152 m_realSchur(matrix.cols()), 00153 m_matT(matrix.rows(), matrix.cols()), 00154 m_tmp(matrix.cols()) 00155 { 00156 compute(matrix.derived(), computeEigenvectors); 00157 } 00158 00179 EigenvectorsType eigenvectors() const; 00180 00199 const MatrixType& pseudoEigenvectors() const 00200 { 00201 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 00202 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 00203 return m_eivec; 00204 } 00205 00224 MatrixType pseudoEigenvalueMatrix() const; 00225 00244 const EigenvalueType& eigenvalues() const 00245 { 00246 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 00247 return m_eivalues; 00248 } 00249 00277 template<typename InputType> 00278 EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); 00279 00281 ComputationInfo info() const 00282 { 00283 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 00284 return m_info; 00285 } 00286 00288 EigenSolver& setMaxIterations(Index maxIters) 00289 { 00290 m_realSchur.setMaxIterations(maxIters); 00291 return *this; 00292 } 00293 00295 Index getMaxIterations() 00296 { 00297 return m_realSchur.getMaxIterations(); 00298 } 00299 00300 private: 00301 void doComputeEigenvectors(); 00302 00303 protected: 00304 00305 static void check_template_parameters() 00306 { 00307 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 00308 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); 00309 } 00310 00311 MatrixType m_eivec; 00312 EigenvalueType m_eivalues; 00313 bool m_isInitialized; 00314 bool m_eigenvectorsOk; 00315 ComputationInfo m_info; 00316 RealSchur<MatrixType> m_realSchur; 00317 MatrixType m_matT; 00318 00319 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; 00320 ColumnVectorType m_tmp; 00321 }; 00322 00323 template<typename MatrixType> 00324 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const 00325 { 00326 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 00327 Index n = m_eivalues.rows(); 00328 MatrixType matD = MatrixType::Zero(n,n); 00329 for (Index i=0; i<n; ++i) 00330 { 00331 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)))) 00332 matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i)); 00333 else 00334 { 00335 matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), 00336 -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); 00337 ++i; 00338 } 00339 } 00340 return matD; 00341 } 00342 00343 template<typename MatrixType> 00344 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const 00345 { 00346 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 00347 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 00348 Index n = m_eivec.cols(); 00349 EigenvectorsType matV(n,n); 00350 for (Index j=0; j<n; ++j) 00351 { 00352 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n) 00353 { 00354 // we have a real eigen value 00355 matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); 00356 matV.col(j).normalize(); 00357 } 00358 else 00359 { 00360 // we have a pair of complex eigen values 00361 for (Index i=0; i<n; ++i) 00362 { 00363 matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); 00364 matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); 00365 } 00366 matV.col(j).normalize(); 00367 matV.col(j+1).normalize(); 00368 ++j; 00369 } 00370 } 00371 return matV; 00372 } 00373 00374 template<typename MatrixType> 00375 template<typename InputType> 00376 EigenSolver<MatrixType>& 00377 EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) 00378 { 00379 check_template_parameters(); 00380 00381 using std::sqrt; 00382 using std::abs; 00383 using numext::isfinite; 00384 eigen_assert(matrix.cols() == matrix.rows()); 00385 00386 // Reduce to real Schur form. 00387 m_realSchur.compute(matrix.derived(), computeEigenvectors); 00388 00389 m_info = m_realSchur.info(); 00390 00391 if (m_info == Success) 00392 { 00393 m_matT = m_realSchur.matrixT(); 00394 if (computeEigenvectors) 00395 m_eivec = m_realSchur.matrixU(); 00396 00397 // Compute eigenvalues from matT 00398 m_eivalues.resize(matrix.cols()); 00399 Index i = 0; 00400 while (i < matrix.cols()) 00401 { 00402 if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 00403 { 00404 m_eivalues.coeffRef(i) = m_matT.coeff(i, i); 00405 if(!(isfinite)(m_eivalues.coeffRef(i))) 00406 { 00407 m_isInitialized = true; 00408 m_eigenvectorsOk = false; 00409 m_info = NumericalIssue; 00410 return *this; 00411 } 00412 ++i; 00413 } 00414 else 00415 { 00416 Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); 00417 Scalar z; 00418 // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); 00419 // without overflow 00420 { 00421 Scalar t0 = m_matT.coeff(i+1, i); 00422 Scalar t1 = m_matT.coeff(i, i+1); 00423 Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1))); 00424 t0 /= maxval; 00425 t1 /= maxval; 00426 Scalar p0 = p/maxval; 00427 z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); 00428 } 00429 00430 m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); 00431 m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); 00432 if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) 00433 { 00434 m_isInitialized = true; 00435 m_eigenvectorsOk = false; 00436 m_info = NumericalIssue; 00437 return *this; 00438 } 00439 i += 2; 00440 } 00441 } 00442 00443 // Compute eigenvectors. 00444 if (computeEigenvectors) 00445 doComputeEigenvectors(); 00446 } 00447 00448 m_isInitialized = true; 00449 m_eigenvectorsOk = computeEigenvectors; 00450 00451 return *this; 00452 } 00453 00454 // Complex scalar division. 00455 template<typename Scalar> 00456 std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi) 00457 { 00458 using std::abs; 00459 Scalar r,d; 00460 if (abs(yr) > abs(yi)) 00461 { 00462 r = yi/yr; 00463 d = yr + r*yi; 00464 return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d); 00465 } 00466 else 00467 { 00468 r = yr/yi; 00469 d = yi + r*yr; 00470 return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d); 00471 } 00472 } 00473 00474 00475 template<typename MatrixType> 00476 void EigenSolver<MatrixType>::doComputeEigenvectors() 00477 { 00478 using std::abs; 00479 const Index size = m_eivec.cols(); 00480 const Scalar eps = NumTraits<Scalar>::epsilon(); 00481 00482 // inefficient! this is already computed in RealSchur 00483 Scalar norm(0); 00484 for (Index j = 0; j < size; ++j) 00485 { 00486 norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); 00487 } 00488 00489 // Backsubstitute to find vectors of upper triangular form 00490 if (norm == Scalar(0)) 00491 { 00492 return; 00493 } 00494 00495 for (Index n = size-1; n >= 0; n--) 00496 { 00497 Scalar p = m_eivalues.coeff(n).real(); 00498 Scalar q = m_eivalues.coeff(n).imag(); 00499 00500 // Scalar vector 00501 if (q == Scalar(0)) 00502 { 00503 Scalar lastr(0), lastw(0); 00504 Index l = n; 00505 00506 m_matT.coeffRef(n,n) = 1.0; 00507 for (Index i = n-1; i >= 0; i--) 00508 { 00509 Scalar w = m_matT.coeff(i,i) - p; 00510 Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 00511 00512 if (m_eivalues.coeff(i).imag() < Scalar(0)) 00513 { 00514 lastw = w; 00515 lastr = r; 00516 } 00517 else 00518 { 00519 l = i; 00520 if (m_eivalues.coeff(i).imag() == Scalar(0)) 00521 { 00522 if (w != Scalar(0)) 00523 m_matT.coeffRef(i,n) = -r / w; 00524 else 00525 m_matT.coeffRef(i,n) = -r / (eps * norm); 00526 } 00527 else // Solve real equations 00528 { 00529 Scalar x = m_matT.coeff(i,i+1); 00530 Scalar y = m_matT.coeff(i+1,i); 00531 Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); 00532 Scalar t = (x * lastr - lastw * r) / denom; 00533 m_matT.coeffRef(i,n) = t; 00534 if (abs(x) > abs(lastw)) 00535 m_matT.coeffRef(i+1,n) = (-r - w * t) / x; 00536 else 00537 m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; 00538 } 00539 00540 // Overflow control 00541 Scalar t = abs(m_matT.coeff(i,n)); 00542 if ((eps * t) * t > Scalar(1)) 00543 m_matT.col(n).tail(size-i) /= t; 00544 } 00545 } 00546 } 00547 else if (q < Scalar(0) && n > 0) // Complex vector 00548 { 00549 Scalar lastra(0), lastsa(0), lastw(0); 00550 Index l = n-1; 00551 00552 // Last vector component imaginary so matrix is triangular 00553 if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) 00554 { 00555 m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); 00556 m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); 00557 } 00558 else 00559 { 00560 std::complex<Scalar> cc = cdiv<Scalar>(Scalar(0),-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q); 00561 m_matT.coeffRef(n-1,n-1) = numext::real(cc); 00562 m_matT.coeffRef(n-1,n) = numext::imag(cc); 00563 } 00564 m_matT.coeffRef(n,n-1) = Scalar(0); 00565 m_matT.coeffRef(n,n) = Scalar(1); 00566 for (Index i = n-2; i >= 0; i--) 00567 { 00568 Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); 00569 Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 00570 Scalar w = m_matT.coeff(i,i) - p; 00571 00572 if (m_eivalues.coeff(i).imag() < Scalar(0)) 00573 { 00574 lastw = w; 00575 lastra = ra; 00576 lastsa = sa; 00577 } 00578 else 00579 { 00580 l = i; 00581 if (m_eivalues.coeff(i).imag() == RealScalar(0)) 00582 { 00583 std::complex<Scalar> cc = cdiv(-ra,-sa,w,q); 00584 m_matT.coeffRef(i,n-1) = numext::real(cc); 00585 m_matT.coeffRef(i,n) = numext::imag(cc); 00586 } 00587 else 00588 { 00589 // Solve complex equations 00590 Scalar x = m_matT.coeff(i,i+1); 00591 Scalar y = m_matT.coeff(i+1,i); 00592 Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; 00593 Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; 00594 if ((vr == Scalar(0)) && (vi == Scalar(0))) 00595 vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); 00596 00597 std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi); 00598 m_matT.coeffRef(i,n-1) = numext::real(cc); 00599 m_matT.coeffRef(i,n) = numext::imag(cc); 00600 if (abs(x) > (abs(lastw) + abs(q))) 00601 { 00602 m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; 00603 m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; 00604 } 00605 else 00606 { 00607 cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q); 00608 m_matT.coeffRef(i+1,n-1) = numext::real(cc); 00609 m_matT.coeffRef(i+1,n) = numext::imag(cc); 00610 } 00611 } 00612 00613 // Overflow control 00614 Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); 00615 if ((eps * t) * t > Scalar(1)) 00616 m_matT.block(i, n-1, size-i, 2) /= t; 00617 00618 } 00619 } 00620 00621 // We handled a pair of complex conjugate eigenvalues, so need to skip them both 00622 n--; 00623 } 00624 else 00625 { 00626 eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen 00627 } 00628 } 00629 00630 // Back transformation to get eigenvectors of original matrix 00631 for (Index j = size-1; j >= 0; j--) 00632 { 00633 m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); 00634 m_eivec.col(j) = m_tmp; 00635 } 00636 } 00637 00638 } // end namespace Eigen 00639 00640 #endif // EIGEN_EIGENSOLVER_H