MOAB  4.9.3pre
SelfadjointMatrixVector.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00011 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 /* Optimized selfadjoint matrix * vector product:
00018  * This algorithm processes 2 columns at onces that allows to both reduce
00019  * the number of load/stores of the result by a factor 2 and to reduce
00020  * the instruction dependency.
00021  */
00022 
00023 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
00024 struct selfadjoint_matrix_vector_product;
00025 
00026 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00027 struct selfadjoint_matrix_vector_product
00028 
00029 {
00030 static EIGEN_DONT_INLINE void run(
00031   Index size,
00032   const Scalar*  lhs, Index lhsStride,
00033   const Scalar*  rhs,
00034   Scalar* res,
00035   Scalar alpha);
00036 };
00037 
00038 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
00039 EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
00040   Index size,
00041   const Scalar*  lhs, Index lhsStride,
00042   const Scalar*  rhs,
00043   Scalar* res,
00044   Scalar alpha)
00045 {
00046   typedef typename packet_traits<Scalar>::type Packet;
00047   typedef typename NumTraits<Scalar>::Real RealScalar;
00048   const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
00049 
00050   enum {
00051     IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
00052     IsLower = UpLo == Lower ? 1 : 0,
00053     FirstTriangular = IsRowMajor == IsLower
00054   };
00055 
00056   conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
00057   conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
00058   conj_helper<RealScalar,Scalar,false, ConjugateRhs> cjd;
00059 
00060   conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
00061   conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
00062 
00063   Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
00064 
00065 
00066   Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
00067   if (FirstTriangular)
00068     bound = size - bound;
00069 
00070   for (Index j=FirstTriangular ? bound : 0;
00071        j<(FirstTriangular ? size : bound);j+=2)
00072   {
00073     const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00074     const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
00075 
00076     Scalar t0 = cjAlpha * rhs[j];
00077     Packet ptmp0 = pset1<Packet>(t0);
00078     Scalar t1 = cjAlpha * rhs[j+1];
00079     Packet ptmp1 = pset1<Packet>(t1);
00080 
00081     Scalar t2(0);
00082     Packet ptmp2 = pset1<Packet>(t2);
00083     Scalar t3(0);
00084     Packet ptmp3 = pset1<Packet>(t3);
00085 
00086     size_t starti = FirstTriangular ? 0 : j+2;
00087     size_t endi   = FirstTriangular ? j : size;
00088     size_t alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti);
00089     size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
00090 
00091     res[j]   += cjd.pmul(numext::real(A0[j]), t0);
00092     res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
00093     if(FirstTriangular)
00094     {
00095       res[j]   += cj0.pmul(A1[j],   t1);
00096       t3       += cj1.pmul(A1[j],   rhs[j]);
00097     }
00098     else
00099     {
00100       res[j+1] += cj0.pmul(A0[j+1],t0);
00101       t2 += cj1.pmul(A0[j+1], rhs[j+1]);
00102     }
00103 
00104     for (size_t i=starti; i<alignedStart; ++i)
00105     {
00106       res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00107       t2 += cj1.pmul(A0[i], rhs[i]);
00108       t3 += cj1.pmul(A1[i], rhs[i]);
00109     }
00110     // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
00111     // gcc 4.2 does this optimization automatically.
00112     const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
00113     const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
00114     const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
00115           Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
00116     for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
00117     {
00118       Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
00119       Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
00120       Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
00121       Packet Xi  = pload <Packet>(resIt);
00122 
00123       Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
00124       ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
00125       ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
00126       pstore(resIt,Xi); resIt += PacketSize;
00127     }
00128     for (size_t i=alignedEnd; i<endi; i++)
00129     {
00130       res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00131       t2 += cj1.pmul(A0[i], rhs[i]);
00132       t3 += cj1.pmul(A1[i], rhs[i]);
00133     }
00134 
00135     res[j]   += alpha * (t2 + predux(ptmp2));
00136     res[j+1] += alpha * (t3 + predux(ptmp3));
00137   }
00138   for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
00139   {
00140     const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00141 
00142     Scalar t1 = cjAlpha * rhs[j];
00143     Scalar t2(0);
00144     res[j] += cjd.pmul(numext::real(A0[j]), t1);
00145     for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
00146     {
00147       res[i] += cj0.pmul(A0[i], t1);
00148       t2 += cj1.pmul(A0[i], rhs[i]);
00149     }
00150     res[j] += alpha * t2;
00151   }
00152 }
00153 
00154 } // end namespace internal 
00155 
00156 /***************************************************************************
00157 * Wrapper to product_selfadjoint_vector
00158 ***************************************************************************/
00159 
00160 namespace internal {
00161 
00162 template<typename Lhs, int LhsMode, typename Rhs>
00163 struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,0,true>
00164 {
00165   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
00166   
00167   typedef internal::blas_traits<Lhs> LhsBlasTraits;
00168   typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
00169   typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
00170   
00171   typedef internal::blas_traits<Rhs> RhsBlasTraits;
00172   typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
00173   typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
00174 
00175   enum { LhsUpLo = LhsMode&(Upper|Lower) };
00176 
00177   template<typename Dest>
00178   static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
00179   {
00180     typedef typename Dest::Scalar ResScalar;
00181     typedef typename Rhs::Scalar RhsScalar;
00182     typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
00183     
00184     eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
00185 
00186     typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
00187     typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
00188 
00189     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
00190                                * RhsBlasTraits::extractScalarFactor(a_rhs);
00191 
00192     enum {
00193       EvalToDest = (Dest::InnerStrideAtCompileTime==1),
00194       UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
00195     };
00196     
00197     internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
00198     internal::gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!UseRhs> static_rhs;
00199 
00200     ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
00201                                                   EvalToDest ? dest.data() : static_dest.data());
00202                                                   
00203     ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
00204         UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
00205     
00206     if(!EvalToDest)
00207     {
00208       #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00209       Index size = dest.size();
00210       EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00211       #endif
00212       MappedDest(actualDestPtr, dest.size()) = dest;
00213     }
00214       
00215     if(!UseRhs)
00216     {
00217       #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00218       Index size = rhs.size();
00219       EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00220       #endif
00221       Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
00222     }
00223       
00224       
00225     internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor,
00226                                                 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
00227       (
00228         lhs.rows(),                             // size
00229         &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
00230         actualRhsPtr,                           // rhs info
00231         actualDestPtr,                          // result info
00232         actualAlpha                             // scale factor
00233       );
00234     
00235     if(!EvalToDest)
00236       dest = MappedDest(actualDestPtr, dest.size());
00237   }
00238 };
00239 
00240 template<typename Lhs, typename Rhs, int RhsMode>
00241 struct selfadjoint_product_impl<Lhs,0,true,Rhs,RhsMode,false>
00242 {
00243   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
00244   enum { RhsUpLo = RhsMode&(Upper|Lower)  };
00245 
00246   template<typename Dest>
00247   static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
00248   {
00249     // let's simply transpose the product
00250     Transpose<Dest> destT(dest);
00251     selfadjoint_product_impl<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
00252                              Transpose<const Lhs>, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha);
00253   }
00254 };
00255 
00256 } // end namespace internal
00257 
00258 } // end namespace Eigen
00259 
00260 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines