MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2006 Sandia National Laboratories. Developed at the 00005 University of Wisconsin--Madison under SNL contract number 00006 624796. The U.S. Government and the University of Wisconsin 00007 retain certain rights to this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2006) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 /** \file TShapeSizeB3.cpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #include "Mesquite.hpp" 00033 #include "TShapeSizeB3.hpp" 00034 #include "TMPDerivs.hpp" 00035 #include "MsqError.hpp" 00036 00037 #include <iostream> 00038 00039 namespace MBMesquite 00040 { 00041 00042 std::string TShapeSizeB3::get_name() const 00043 { 00044 return "TShapeSizeB3"; 00045 } 00046 00047 TShapeSizeB3::~TShapeSizeB3() {} 00048 00049 bool TShapeSizeB3::evaluate( const MsqMatrix< 2, 2 >& T, double& result, MsqError& err ) 00050 { 00051 const double tau = det( T ); 00052 if( invalid_determinant( tau ) ) 00053 { // barrier 00054 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00055 return false; 00056 } 00057 00058 result = sqr_Frobenius( T ) - 2.0 * std::log( tau ) - 2; 00059 return true; 00060 } 00061 00062 bool TShapeSizeB3::evaluate_with_grad( const MsqMatrix< 2, 2 >& T, 00063 double& result, 00064 MsqMatrix< 2, 2 >& deriv_wrt_T, 00065 MsqError& err ) 00066 { 00067 const double tau = det( T ); 00068 if( invalid_determinant( tau ) ) 00069 { // barrier 00070 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00071 return false; 00072 } 00073 00074 result = sqr_Frobenius( T ) - 2.0 * std::log( tau ) - 2; 00075 deriv_wrt_T = T; 00076 deriv_wrt_T -= 1 / tau * transpose_adj( T ); 00077 deriv_wrt_T *= 2; 00078 00079 return true; 00080 } 00081 00082 bool TShapeSizeB3::evaluate_with_hess( const MsqMatrix< 2, 2 >& T, 00083 double& result, 00084 MsqMatrix< 2, 2 >& deriv_wrt_T, 00085 MsqMatrix< 2, 2 > second_wrt_T[3], 00086 MsqError& err ) 00087 { 00088 const double tau = det( T ); 00089 if( invalid_determinant( tau ) ) 00090 { // barrier 00091 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00092 return false; 00093 } 00094 00095 result = sqr_Frobenius( T ) - 2.0 * std::log( tau ) - 2; 00096 00097 const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); 00098 const double it = 1 / tau; 00099 deriv_wrt_T = T; 00100 deriv_wrt_T -= it * adjt; 00101 deriv_wrt_T *= 2; 00102 00103 set_scaled_outer_product( second_wrt_T, 2 * it * it, adjt ); 00104 pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -2 * it ); 00105 pluseq_scaled_I( second_wrt_T, 2.0 ); 00106 00107 return true; 00108 } 00109 00110 bool TShapeSizeB3::evaluate( const MsqMatrix< 3, 3 >& T, double& result, MsqError& err ) 00111 { 00112 const double tau = det( T ); 00113 if( invalid_determinant( tau ) ) 00114 { // barrier 00115 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00116 return false; 00117 } 00118 00119 double n = Frobenius( T ); 00120 result = n * n * n - 3 * MSQ_SQRT_THREE * ( log( tau ) + 1 ); 00121 return true; 00122 } 00123 00124 bool TShapeSizeB3::evaluate_with_grad( const MsqMatrix< 3, 3 >& T, 00125 double& result, 00126 MsqMatrix< 3, 3 >& deriv_wrt_T, 00127 MsqError& err ) 00128 { 00129 const double tau = det( T ); 00130 if( invalid_determinant( tau ) ) 00131 { // barrier 00132 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00133 return false; 00134 } 00135 00136 double n = Frobenius( T ); 00137 result = n * n * n - 3 * MSQ_SQRT_THREE * ( log( tau ) + 1 ); 00138 00139 const MsqMatrix< 3, 3 > adjt = transpose_adj( T ); 00140 deriv_wrt_T = T; 00141 deriv_wrt_T *= 3 * n; 00142 deriv_wrt_T -= 3 * MSQ_SQRT_THREE / tau * adjt; 00143 00144 return true; 00145 } 00146 00147 bool TShapeSizeB3::evaluate_with_hess( const MsqMatrix< 3, 3 >& T, 00148 double& result, 00149 MsqMatrix< 3, 3 >& deriv_wrt_T, 00150 MsqMatrix< 3, 3 > second_wrt_T[6], 00151 MsqError& err ) 00152 { 00153 const double tau = det( T ); 00154 if( invalid_determinant( tau ) ) 00155 { // barrier 00156 MSQ_SETERR( err )( barrier_violated_msg, MsqError::BARRIER_VIOLATED ); 00157 return false; 00158 } 00159 00160 double n = Frobenius( T ); 00161 result = n * n * n - 3 * MSQ_SQRT_THREE * ( log( tau ) + 1 ); 00162 00163 const MsqMatrix< 3, 3 > adjt = transpose_adj( T ); 00164 const double it = 1 / tau; 00165 deriv_wrt_T = T; 00166 deriv_wrt_T *= 3 * n; 00167 deriv_wrt_T -= 3 * MSQ_SQRT_THREE * it * adjt; 00168 00169 if( n > 1e-50 ) 00170 { 00171 set_scaled_outer_product( second_wrt_T, 3 / n, T ); 00172 pluseq_scaled_I( second_wrt_T, 3 * n ); 00173 pluseq_scaled_2nd_deriv_of_det( second_wrt_T, -3 * MSQ_SQRT_THREE * it, T ); 00174 pluseq_scaled_outer_product( second_wrt_T, 3 * MSQ_SQRT_THREE * it * it, adjt ); 00175 } 00176 else 00177 { 00178 std::cout << "Warning: Division by zero avoided in TShapeSizeB3::evaluate_with_hess()" << std::endl; 00179 } 00180 00181 return true; 00182 } 00183 00184 } // namespace MBMesquite