MOAB
4.9.3pre
|
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More...
#include <AngleAxis.h>
Public Types | |
enum | { Dim = 3 } |
typedef _Scalar | Scalar |
typedef Matrix< Scalar, 3, 3 > | Matrix3 |
typedef Matrix< Scalar, 3, 1 > | Vector3 |
typedef Quaternion< Scalar > | QuaternionType |
Public Member Functions | |
AngleAxis () | |
template<typename Derived > | |
AngleAxis (const Scalar &angle, const MatrixBase< Derived > &axis) | |
template<typename QuatDerived > | |
AngleAxis (const QuaternionBase< QuatDerived > &q) | |
template<typename Derived > | |
AngleAxis (const MatrixBase< Derived > &m) | |
Scalar | angle () const |
Scalar & | angle () |
const Vector3 & | axis () const |
Vector3 & | axis () |
QuaternionType | operator* (const AngleAxis &other) const |
QuaternionType | operator* (const QuaternionType &other) const |
AngleAxis | inverse () const |
template<class QuatDerived > | |
AngleAxis & | operator= (const QuaternionBase< QuatDerived > &q) |
template<typename Derived > | |
AngleAxis & | operator= (const MatrixBase< Derived > &m) |
template<typename Derived > | |
AngleAxis & | fromRotationMatrix (const MatrixBase< Derived > &m) |
Sets *this from a 3x3 rotation matrix. | |
Matrix3 | toRotationMatrix (void) const |
template<typename NewScalarType > | |
internal::cast_return_type < AngleAxis, AngleAxis < NewScalarType > >::type | cast () const |
template<typename OtherScalarType > | |
AngleAxis (const AngleAxis< OtherScalarType > &other) | |
bool | isApprox (const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const |
Static Public Member Functions | |
static const AngleAxis | Identity () |
Protected Attributes | |
Vector3 | m_axis |
Scalar | m_angle |
Private Types | |
typedef RotationBase < AngleAxis< _Scalar >, 3 > | Base |
Friends | |
QuaternionType | operator* (const QuaternionType &a, const AngleAxis &b) |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
_Scalar | the scalar type, i.e., the type of the coefficients. |
The following two typedefs are provided for convenience:
AngleAxisf
for float
AngleAxisd
for double
Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily mimic Euler-angles. Here is an example:
Output:
Definition at line 49 of file AngleAxis.h.
typedef RotationBase<AngleAxis<_Scalar>,3> Eigen::AngleAxis< _Scalar >::Base [private] |
Definition at line 51 of file AngleAxis.h.
typedef Matrix<Scalar,3,3> Eigen::AngleAxis< _Scalar >::Matrix3 |
Definition at line 60 of file AngleAxis.h.
typedef Quaternion<Scalar> Eigen::AngleAxis< _Scalar >::QuaternionType |
Definition at line 62 of file AngleAxis.h.
typedef _Scalar Eigen::AngleAxis< _Scalar >::Scalar |
the scalar type of the coefficients
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
Definition at line 59 of file AngleAxis.h.
typedef Matrix<Scalar,3,1> Eigen::AngleAxis< _Scalar >::Vector3 |
Definition at line 61 of file AngleAxis.h.
anonymous enum |
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | ) | [inline] |
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const Scalar & | angle, |
const MatrixBase< Derived > & | axis | ||
) | [inline] |
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const QuaternionBase< QuatDerived > & | q | ) | [inline, explicit] |
Constructs and initialize the angle-axis rotation from a quaternion q. This function implicitly normalizes the quaternion q.
Definition at line 83 of file AngleAxis.h.
{ *this = q; }
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const MatrixBase< Derived > & | m | ) | [inline, explicit] |
Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix.
Definition at line 86 of file AngleAxis.h.
{ *this = m; }
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const AngleAxis< OtherScalarType > & | other | ) | [inline, explicit] |
Copy constructor with scalar type conversion
Definition at line 137 of file AngleAxis.h.
Scalar Eigen::AngleAxis< _Scalar >::angle | ( | ) | const [inline] |
Definition at line 89 of file AngleAxis.h.
{ return m_angle; }
Scalar& Eigen::AngleAxis< _Scalar >::angle | ( | ) | [inline] |
Definition at line 91 of file AngleAxis.h.
{ return m_angle; }
const Vector3& Eigen::AngleAxis< _Scalar >::axis | ( | ) | const [inline] |
Vector3& Eigen::AngleAxis< _Scalar >::axis | ( | ) | [inline] |
Definition at line 99 of file AngleAxis.h.
{ return m_axis; }
internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type Eigen::AngleAxis< _Scalar >::cast | ( | ) | const [inline] |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
Definition at line 132 of file AngleAxis.h.
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
AngleAxis< Scalar > & Eigen::AngleAxis< Scalar >::fromRotationMatrix | ( | const MatrixBase< Derived > & | m | ) |
Sets *this
from a 3x3 rotation matrix.
Definition at line 202 of file AngleAxis.h.
{ return *this = QuaternionType(mat); }
static const AngleAxis Eigen::AngleAxis< _Scalar >::Identity | ( | ) | [inline, static] |
Definition at line 143 of file AngleAxis.h.
AngleAxis Eigen::AngleAxis< _Scalar >::inverse | ( | ) | const [inline] |
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
Definition at line 114 of file AngleAxis.h.
bool Eigen::AngleAxis< _Scalar >::isApprox | ( | const AngleAxis< _Scalar > & | other, |
const typename NumTraits< Scalar >::Real & | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
true
if *this
is approximately equal to other, within the precision determined by prec.Definition at line 149 of file AngleAxis.h.
{ return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
QuaternionType Eigen::AngleAxis< _Scalar >::operator* | ( | const AngleAxis< _Scalar > & | other | ) | const [inline] |
Concatenates two rotations
Definition at line 102 of file AngleAxis.h.
{ return QuaternionType(*this) * QuaternionType(other); }
QuaternionType Eigen::AngleAxis< _Scalar >::operator* | ( | const QuaternionType & | other | ) | const [inline] |
Concatenates two rotations
Definition at line 106 of file AngleAxis.h.
{ return QuaternionType(*this) * other; }
AngleAxis< Scalar > & Eigen::AngleAxis< Scalar >::operator= | ( | const QuaternionBase< QuatDerived > & | q | ) |
Set *this
from a unit quaternion. The resulting axis is normalized.
This function implicitly normalizes the quaternion q.
Definition at line 167 of file AngleAxis.h.
AngleAxis< Scalar > & Eigen::AngleAxis< Scalar >::operator= | ( | const MatrixBase< Derived > & | mat | ) |
Set *this
from a 3x3 rotation matrix mat.
Definition at line 190 of file AngleAxis.h.
{ // Since a direct conversion would not be really faster, // let's use the robust Quaternion implementation: return *this = QuaternionType(mat); }
AngleAxis< Scalar >::Matrix3 Eigen::AngleAxis< Scalar >::toRotationMatrix | ( | void | ) | const |
Constructs and
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
Definition at line 211 of file AngleAxis.h.
{ using std::sin; using std::cos; Matrix3 res; Vector3 sin_axis = sin(m_angle) * m_axis; Scalar c = cos(m_angle); Vector3 cos1_axis = (Scalar(1)-c) * m_axis; Scalar tmp; tmp = cos1_axis.x() * m_axis.y(); res.coeffRef(0,1) = tmp - sin_axis.z(); res.coeffRef(1,0) = tmp + sin_axis.z(); tmp = cos1_axis.x() * m_axis.z(); res.coeffRef(0,2) = tmp + sin_axis.y(); res.coeffRef(2,0) = tmp - sin_axis.y(); tmp = cos1_axis.y() * m_axis.z(); res.coeffRef(1,2) = tmp - sin_axis.x(); res.coeffRef(2,1) = tmp + sin_axis.x(); res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; return res; }
QuaternionType operator* | ( | const QuaternionType & | a, |
const AngleAxis< _Scalar > & | b | ||
) | [friend] |
Concatenates two rotations
Definition at line 110 of file AngleAxis.h.
{ return a * QuaternionType(b); }
Scalar Eigen::AngleAxis< _Scalar >::m_angle [protected] |
Definition at line 67 of file AngleAxis.h.
Vector3 Eigen::AngleAxis< _Scalar >::m_axis [protected] |
Definition at line 66 of file AngleAxis.h.