MOAB  4.9.3pre
Eigen::IncompleteLUT< _Scalar, _StorageIndex > Class Template Reference

Incomplete LU factorization with dual-threshold strategy. More...

#include <IncompleteLUT.h>

Inheritance diagram for Eigen::IncompleteLUT< _Scalar, _StorageIndex >:
Collaboration diagram for Eigen::IncompleteLUT< _Scalar, _StorageIndex >:

List of all members.

Classes

struct  keep_diag

Public Types

enum  { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }
typedef _Scalar Scalar
typedef _StorageIndex StorageIndex
typedef NumTraits< Scalar >::Real RealScalar
typedef Matrix< Scalar,
Dynamic, 1 > 
Vector
typedef Matrix< StorageIndex,
Dynamic, 1 > 
VectorI
typedef SparseMatrix< Scalar,
RowMajor, StorageIndex
FactorType

Public Member Functions

 IncompleteLUT ()
template<typename MatrixType >
 IncompleteLUT (const MatrixType &mat, const RealScalar &droptol=NumTraits< Scalar >::dummy_precision(), int fillfactor=10)
Index rows () const
Index cols () const
ComputationInfo info () const
 Reports whether previous computation was successful.
template<typename MatrixType >
void analyzePattern (const MatrixType &amat)
template<typename MatrixType >
void factorize (const MatrixType &amat)
template<typename MatrixType >
IncompleteLUTcompute (const MatrixType &amat)
void setDroptol (const RealScalar &droptol)
void setFillfactor (int fillfactor)
template<typename Rhs , typename Dest >
void _solve_impl (const Rhs &b, Dest &x) const
template<typename _MatrixType >
void analyzePattern (const _MatrixType &amat)
template<typename _MatrixType >
void factorize (const _MatrixType &amat)

Protected Types

typedef SparseSolverBase
< IncompleteLUT
Base

Protected Attributes

FactorType m_lu
RealScalar m_droptol
int m_fillfactor
bool m_analysisIsOk
bool m_factorizationIsOk
ComputationInfo m_info
PermutationMatrix< Dynamic,
Dynamic, StorageIndex
m_P
PermutationMatrix< Dynamic,
Dynamic, StorageIndex
m_Pinv

Detailed Description

template<typename _Scalar, typename _StorageIndex = int>
class Eigen::IncompleteLUT< _Scalar, _StorageIndex >

Incomplete LU factorization with dual-threshold strategy.

During the numerical factorization, two dropping rules are used : 1) any element whose magnitude is less than some tolerance is dropped. This tolerance is obtained by multiplying the input tolerance droptol by the average magnitude of all the original elements in the current row. 2) After the elimination of the row, only the fill largest elements in the L part and the fill largest elements in the U part are kept (in addition to the diagonal element ). Note that fill is computed from the input parameter fillfactor which is used the ratio to control the fill_in relatively to the initial number of nonzero elements.

The two extreme cases are when droptol=0 (to keep all the fill*2 largest elements) and when fill=n/2 with droptol being different to zero.

References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.

NOTE : The following implementation is derived from the ILUT implementation in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota released under the terms of the GNU LGPL: http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html alternatively, on GMANE: http://comments.gmane.org/gmane.comp.lib.eigen/3302

Definition at line 99 of file IncompleteLUT.h.


Member Typedef Documentation

template<typename _Scalar , typename _StorageIndex = int>
typedef SparseSolverBase<IncompleteLUT> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::Base [protected]

Definition at line 102 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef SparseMatrix<Scalar,RowMajor,StorageIndex> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::FactorType

Definition at line 110 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef NumTraits<Scalar>::Real Eigen::IncompleteLUT< _Scalar, _StorageIndex >::RealScalar

Definition at line 107 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef _Scalar Eigen::IncompleteLUT< _Scalar, _StorageIndex >::Scalar

Definition at line 105 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef _StorageIndex Eigen::IncompleteLUT< _Scalar, _StorageIndex >::StorageIndex

Definition at line 106 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef Matrix<Scalar,Dynamic,1> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::Vector

Definition at line 108 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
typedef Matrix<StorageIndex,Dynamic,1> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::VectorI

Definition at line 109 of file IncompleteLUT.h.


Member Enumeration Documentation

template<typename _Scalar , typename _StorageIndex = int>
anonymous enum
Enumerator:
ColsAtCompileTime 
MaxColsAtCompileTime 

Definition at line 112 of file IncompleteLUT.h.


Constructor & Destructor Documentation

template<typename _Scalar , typename _StorageIndex = int>
Eigen::IncompleteLUT< _Scalar, _StorageIndex >::IncompleteLUT ( ) [inline]

Definition at line 119 of file IncompleteLUT.h.

      : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
        m_analysisIsOk(false), m_factorizationIsOk(false)
    {}
template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
Eigen::IncompleteLUT< _Scalar, _StorageIndex >::IncompleteLUT ( const MatrixType &  mat,
const RealScalar droptol = NumTraits<Scalar>::dummy_precision(),
int  fillfactor = 10 
) [inline, explicit]

Definition at line 125 of file IncompleteLUT.h.

      : m_droptol(droptol),m_fillfactor(fillfactor),
        m_analysisIsOk(false),m_factorizationIsOk(false)
    {
      eigen_assert(fillfactor != 0);
      compute(mat); 
    }

Member Function Documentation

template<typename _Scalar , typename _StorageIndex = int>
template<typename Rhs , typename Dest >
void Eigen::IncompleteLUT< _Scalar, _StorageIndex >::_solve_impl ( const Rhs &  b,
Dest &  x 
) const [inline]

Definition at line 171 of file IncompleteLUT.h.

    {
      x = m_Pinv * b;
      x = m_lu.template triangularView<UnitLower>().solve(x);
      x = m_lu.template triangularView<Upper>().solve(x);
      x = m_P * x; 
    }
template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
void Eigen::IncompleteLUT< _Scalar, _StorageIndex >::analyzePattern ( const MatrixType &  amat)
template<typename _Scalar , typename _StorageIndex = int>
template<typename _MatrixType >
void Eigen::IncompleteLUT< _Scalar, _StorageIndex >::analyzePattern ( const _MatrixType &  amat)

Definition at line 223 of file IncompleteLUT.h.

{
  // Compute the Fill-reducing permutation
  // Since ILUT does not perform any numerical pivoting,
  // it is highly preferable to keep the diagonal through symmetric permutations.
#ifndef EIGEN_MPL2_ONLY
  // To this end, let's symmetrize the pattern and perform AMD on it.
  SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
  SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
  // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
  //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
  SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
  AMDOrdering<StorageIndex> ordering;
  ordering(AtA,m_P);
  m_Pinv  = m_P.inverse(); // cache the inverse permutation
#else
  // If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
  SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
  COLAMDOrdering<StorageIndex> ordering;
  ordering(mat1,m_Pinv);
  m_P = m_Pinv.inverse();
#endif

  m_analysisIsOk = true;
  m_factorizationIsOk = false;
  m_isInitialized = true;
}
template<typename _Scalar , typename _StorageIndex = int>
Index Eigen::IncompleteLUT< _Scalar, _StorageIndex >::cols ( void  ) const [inline]

Definition at line 135 of file IncompleteLUT.h.

{ return m_lu.cols(); }
template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
IncompleteLUT& Eigen::IncompleteLUT< _Scalar, _StorageIndex >::compute ( const MatrixType &  amat) [inline]

Compute an incomplete LU factorization with dual threshold on the matrix mat No pivoting is done in this version

Definition at line 160 of file IncompleteLUT.h.

    {
      analyzePattern(amat); 
      factorize(amat);
      return *this;
    }
template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
void Eigen::IncompleteLUT< _Scalar, _StorageIndex >::factorize ( const MatrixType &  amat)
template<typename _Scalar , typename _StorageIndex = int>
template<typename _MatrixType >
void Eigen::IncompleteLUT< _Scalar, _StorageIndex >::factorize ( const _MatrixType &  amat)

Definition at line 253 of file IncompleteLUT.h.

{
  using std::sqrt;
  using std::swap;
  using std::abs;
  using internal::convert_index;

  eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
  Index n = amat.cols();  // Size of the matrix
  m_lu.resize(n,n);
  // Declare Working vectors and variables
  Vector u(n) ;     // real values of the row -- maximum size is n --
  VectorI ju(n);   // column position of the values in u -- maximum size  is n
  VectorI jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1

  // Apply the fill-reducing permutation
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  SparseMatrix<Scalar,RowMajor, StorageIndex> mat;
  mat = amat.twistedBy(m_Pinv);

  // Initialization
  jr.fill(-1);
  ju.fill(0);
  u.fill(0);

  // number of largest elements to keep in each row:
  Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1;
  if (fill_in > n) fill_in = n;

  // number of largest nonzero elements to keep in the L and the U part of the current row:
  Index nnzL = fill_in/2;
  Index nnzU = nnzL;
  m_lu.reserve(n * (nnzL + nnzU + 1));

  // global loop over the rows of the sparse matrix
  for (Index ii = 0; ii < n; ii++)
  {
    // 1 - copy the lower and the upper part of the row i of mat in the working vector u

    Index sizeu = 1; // number of nonzero elements in the upper part of the current row
    Index sizel = 0; // number of nonzero elements in the lower part of the current row
    ju(ii)    = convert_index<StorageIndex>(ii);
    u(ii)     = 0;
    jr(ii)    = convert_index<StorageIndex>(ii);
    RealScalar rownorm = 0;

    typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
    for (; j_it; ++j_it)
    {
      Index k = j_it.index();
      if (k < ii)
      {
        // copy the lower part
        ju(sizel) = convert_index<StorageIndex>(k);
        u(sizel) = j_it.value();
        jr(k) = convert_index<StorageIndex>(sizel);
        ++sizel;
      }
      else if (k == ii)
      {
        u(ii) = j_it.value();
      }
      else
      {
        // copy the upper part
        Index jpos = ii + sizeu;
        ju(jpos) = convert_index<StorageIndex>(k);
        u(jpos) = j_it.value();
        jr(k) = convert_index<StorageIndex>(jpos);
        ++sizeu;
      }
      rownorm += numext::abs2(j_it.value());
    }

    // 2 - detect possible zero row
    if(rownorm==0)
    {
      m_info = NumericalIssue;
      return;
    }
    // Take the 2-norm of the current row as a relative tolerance
    rownorm = sqrt(rownorm);

    // 3 - eliminate the previous nonzero rows
    Index jj = 0;
    Index len = 0;
    while (jj < sizel)
    {
      // In order to eliminate in the correct order,
      // we must select first the smallest column index among  ju(jj:sizel)
      Index k;
      Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
      k += jj;
      if (minrow != ju(jj))
      {
        // swap the two locations
        Index j = ju(jj);
        swap(ju(jj), ju(k));
        jr(minrow) = convert_index<StorageIndex>(jj);
        jr(j) = convert_index<StorageIndex>(k);
        swap(u(jj), u(k));
      }
      // Reset this location
      jr(minrow) = -1;

      // Start elimination
      typename FactorType::InnerIterator ki_it(m_lu, minrow);
      while (ki_it && ki_it.index() < minrow) ++ki_it;
      eigen_internal_assert(ki_it && ki_it.col()==minrow);
      Scalar fact = u(jj) / ki_it.value();

      // drop too small elements
      if(abs(fact) <= m_droptol)
      {
        jj++;
        continue;
      }

      // linear combination of the current row ii and the row minrow
      ++ki_it;
      for (; ki_it; ++ki_it)
      {
        Scalar prod = fact * ki_it.value();
        Index j     = ki_it.index();
        Index jpos  = jr(j);
        if (jpos == -1) // fill-in element
        {
          Index newpos;
          if (j >= ii) // dealing with the upper part
          {
            newpos = ii + sizeu;
            sizeu++;
            eigen_internal_assert(sizeu<=n);
          }
          else // dealing with the lower part
          {
            newpos = sizel;
            sizel++;
            eigen_internal_assert(sizel<=ii);
          }
          ju(newpos) = convert_index<StorageIndex>(j);
          u(newpos) = -prod;
          jr(j) = convert_index<StorageIndex>(newpos);
        }
        else
          u(jpos) -= prod;
      }
      // store the pivot element
      u(len)  = fact;
      ju(len) = convert_index<StorageIndex>(minrow);
      ++len;

      jj++;
    } // end of the elimination on the row ii

    // reset the upper part of the pointer jr to zero
    for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;

    // 4 - partially sort and insert the elements in the m_lu matrix

    // sort the L-part of the row
    sizel = len;
    len = (std::min)(sizel, nnzL);
    typename Vector::SegmentReturnType ul(u.segment(0, sizel));
    typename VectorI::SegmentReturnType jul(ju.segment(0, sizel));
    internal::QuickSplit(ul, jul, len);

    // store the largest m_fill elements of the L part
    m_lu.startVec(ii);
    for(Index k = 0; k < len; k++)
      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);

    // store the diagonal element
    // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
    if (u(ii) == Scalar(0))
      u(ii) = sqrt(m_droptol) * rownorm;
    m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);

    // sort the U-part of the row
    // apply the dropping rule first
    len = 0;
    for(Index k = 1; k < sizeu; k++)
    {
      if(abs(u(ii+k)) > m_droptol * rownorm )
      {
        ++len;
        u(ii + len)  = u(ii + k);
        ju(ii + len) = ju(ii + k);
      }
    }
    sizeu = len + 1; // +1 to take into account the diagonal element
    len = (std::min)(sizeu, nnzU);
    typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
    typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
    internal::QuickSplit(uu, juu, len);

    // store the largest elements of the U part
    for(Index k = ii + 1; k < ii + len; k++)
      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
  }
  m_lu.finalize();
  m_lu.makeCompressed();

  m_factorizationIsOk = true;
  m_info = Success;
}
template<typename _Scalar , typename _StorageIndex = int>
ComputationInfo Eigen::IncompleteLUT< _Scalar, _StorageIndex >::info ( ) const [inline]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

Definition at line 142 of file IncompleteLUT.h.

    {
      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
      return m_info;
    }
template<typename _Scalar , typename _StorageIndex = int>
Index Eigen::IncompleteLUT< _Scalar, _StorageIndex >::rows ( void  ) const [inline]

Definition at line 133 of file IncompleteLUT.h.

{ return m_lu.rows(); }
template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setDroptol ( const RealScalar droptol)

Set control parameter droptol

Parameters:
droptolDrop any element whose magnitude is less than this tolerance

Definition at line 206 of file IncompleteLUT.h.

{
  this->m_droptol = droptol;   
}
template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setFillfactor ( int  fillfactor)

Set control parameter fillfactor

Parameters:
fillfactorThis is used to compute the number fill_in of largest elements to keep on each row.

Definition at line 216 of file IncompleteLUT.h.

{
  this->m_fillfactor = fillfactor;   
}

Member Data Documentation

template<typename _Scalar , typename _StorageIndex = int>
bool Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_analysisIsOk [protected]

Definition at line 194 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
RealScalar Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_droptol [protected]

Definition at line 192 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
bool Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_factorizationIsOk [protected]

Definition at line 195 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
int Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_fillfactor [protected]

Definition at line 193 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
ComputationInfo Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_info [protected]

Definition at line 196 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
FactorType Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_lu [protected]

Definition at line 191 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
PermutationMatrix<Dynamic,Dynamic,StorageIndex> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_P [protected]

Definition at line 197 of file IncompleteLUT.h.

template<typename _Scalar , typename _StorageIndex = int>
PermutationMatrix<Dynamic,Dynamic,StorageIndex> Eigen::IncompleteLUT< _Scalar, _StorageIndex >::m_Pinv [protected]

Definition at line 198 of file IncompleteLUT.h.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines