MOAB
4.9.3pre
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2009-2010 Gael Guennebaud <[email protected]> 00005 // 00006 // This Source Code Form is subject to the terms of the Mozilla 00007 // Public License v. 2.0. If a copy of the MPL was not distributed 00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00009 00010 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H 00011 #define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H 00012 00013 namespace Eigen { 00014 00015 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs> 00016 struct selfadjoint_rank1_update; 00017 00018 namespace internal { 00019 00020 /********************************************************************** 00021 * This file implements a general A * B product while 00022 * evaluating only one triangular part of the product. 00023 * This is a more general version of self adjoint product (C += A A^T) 00024 * as the level 3 SYRK Blas routine. 00025 **********************************************************************/ 00026 00027 // forward declarations (defined at the end of this file) 00028 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo> 00029 struct tribb_kernel; 00030 00031 /* Optimized matrix-matrix product evaluating only one triangular half */ 00032 template <typename Index, 00033 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 00034 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, 00035 int ResStorageOrder, int UpLo, int Version = Specialized> 00036 struct general_matrix_matrix_triangular_product; 00037 00038 // as usual if the result is row major => we transpose the product 00039 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 00040 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version> 00041 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version> 00042 { 00043 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar; 00044 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride, 00045 const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, 00046 const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking) 00047 { 00048 general_matrix_matrix_triangular_product<Index, 00049 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs, 00050 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs, 00051 ColMajor, UpLo==Lower?Upper:Lower> 00052 ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking); 00053 } 00054 }; 00055 00056 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 00057 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version> 00058 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version> 00059 { 00060 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar; 00061 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride, 00062 const RhsScalar* _rhs, Index rhsStride, ResScalar* _res, Index resStride, 00063 const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking) 00064 { 00065 typedef gebp_traits<LhsScalar,RhsScalar> Traits; 00066 00067 typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper; 00068 typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper; 00069 typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper; 00070 LhsMapper lhs(_lhs,lhsStride); 00071 RhsMapper rhs(_rhs,rhsStride); 00072 ResMapper res(_res, resStride); 00073 00074 Index kc = blocking.kc(); 00075 Index mc = (std::min)(size,blocking.mc()); 00076 00077 // !!! mc must be a multiple of nr: 00078 if(mc > Traits::nr) 00079 mc = (mc/Traits::nr)*Traits::nr; 00080 00081 std::size_t sizeA = kc*mc; 00082 std::size_t sizeB = kc*size; 00083 00084 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA()); 00085 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB()); 00086 00087 gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 00088 gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs; 00089 gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp; 00090 tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb; 00091 00092 for(Index k2=0; k2<depth; k2+=kc) 00093 { 00094 const Index actual_kc = (std::min)(k2+kc,depth)-k2; 00095 00096 // note that the actual rhs is the transpose/adjoint of mat 00097 pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size); 00098 00099 for(Index i2=0; i2<size; i2+=mc) 00100 { 00101 const Index actual_mc = (std::min)(i2+mc,size)-i2; 00102 00103 pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); 00104 00105 // the selected actual_mc * size panel of res is split into three different part: 00106 // 1 - before the diagonal => processed with gebp or skipped 00107 // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel 00108 // 3 - after the diagonal => processed with gebp or skipped 00109 if (UpLo==Lower) 00110 gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, 00111 (std::min)(size,i2), alpha, -1, -1, 0, 0); 00112 00113 00114 sybb(_res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); 00115 00116 if (UpLo==Upper) 00117 { 00118 Index j2 = i2+actual_mc; 00119 gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc, 00120 actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0); 00121 } 00122 } 00123 } 00124 } 00125 }; 00126 00127 // Optimized packed Block * packed Block product kernel evaluating only one given triangular part 00128 // This kernel is built on top of the gebp kernel: 00129 // - the current destination block is processed per panel of actual_mc x BlockSize 00130 // where BlockSize is set to the minimal value allowing gebp to be as fast as possible 00131 // - then, as usual, each panel is split into three parts along the diagonal, 00132 // the sub blocks above and below the diagonal are processed as usual, 00133 // while the triangular block overlapping the diagonal is evaluated into a 00134 // small temporary buffer which is then accumulated into the result using a 00135 // triangular traversal. 00136 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo> 00137 struct tribb_kernel 00138 { 00139 typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits; 00140 typedef typename Traits::ResScalar ResScalar; 00141 00142 enum { 00143 BlockSize = meta_least_common_multiple<EIGEN_PLAIN_ENUM_MAX(mr,nr),EIGEN_PLAIN_ENUM_MIN(mr,nr)>::ret 00144 }; 00145 void operator()(ResScalar* _res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha) 00146 { 00147 typedef blas_data_mapper<ResScalar, Index, ColMajor> ResMapper; 00148 ResMapper res(_res, resStride); 00149 gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel; 00150 00151 Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer; 00152 00153 // let's process the block per panel of actual_mc x BlockSize, 00154 // again, each is split into three parts, etc. 00155 for (Index j=0; j<size; j+=BlockSize) 00156 { 00157 Index actualBlockSize = std::min<Index>(BlockSize,size - j); 00158 const RhsScalar* actual_b = blockB+j*depth; 00159 00160 if(UpLo==Upper) 00161 gebp_kernel(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha, 00162 -1, -1, 0, 0); 00163 00164 // selfadjoint micro block 00165 { 00166 Index i = j; 00167 buffer.setZero(); 00168 // 1 - apply the kernel on the temporary buffer 00169 gebp_kernel(ResMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha, 00170 -1, -1, 0, 0); 00171 // 2 - triangular accumulation 00172 for(Index j1=0; j1<actualBlockSize; ++j1) 00173 { 00174 ResScalar* r = &res(i, j + j1); 00175 for(Index i1=UpLo==Lower ? j1 : 0; 00176 UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1) 00177 r[i1] += buffer(i1,j1); 00178 } 00179 } 00180 00181 if(UpLo==Lower) 00182 { 00183 Index i = j+actualBlockSize; 00184 gebp_kernel(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i, 00185 depth, actualBlockSize, alpha, -1, -1, 0, 0); 00186 } 00187 } 00188 } 00189 }; 00190 00191 } // end namespace internal 00192 00193 // high level API 00194 00195 template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct> 00196 struct general_product_to_triangular_selector; 00197 00198 00199 template<typename MatrixType, typename ProductType, int UpLo> 00200 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true> 00201 { 00202 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha) 00203 { 00204 typedef typename MatrixType::Scalar Scalar; 00205 00206 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs; 00207 typedef internal::blas_traits<Lhs> LhsBlasTraits; 00208 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; 00209 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs; 00210 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs()); 00211 00212 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs; 00213 typedef internal::blas_traits<Rhs> RhsBlasTraits; 00214 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; 00215 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs; 00216 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs()); 00217 00218 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); 00219 00220 enum { 00221 StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor, 00222 UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1, 00223 UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1 00224 }; 00225 00226 internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs; 00227 ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(), 00228 (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data())); 00229 if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs; 00230 00231 internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs; 00232 ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(), 00233 (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data())); 00234 if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs; 00235 00236 00237 selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo, 00238 LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex, 00239 RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex> 00240 ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha); 00241 } 00242 }; 00243 00244 template<typename MatrixType, typename ProductType, int UpLo> 00245 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false> 00246 { 00247 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha) 00248 { 00249 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs; 00250 typedef internal::blas_traits<Lhs> LhsBlasTraits; 00251 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; 00252 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs; 00253 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs()); 00254 00255 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs; 00256 typedef internal::blas_traits<Rhs> RhsBlasTraits; 00257 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; 00258 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs; 00259 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs()); 00260 00261 typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); 00262 00263 enum { 00264 IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0, 00265 LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0, 00266 RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0 00267 }; 00268 00269 Index size = mat.cols(); 00270 Index depth = actualLhs.cols(); 00271 00272 typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar, 00273 MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType; 00274 00275 BlockingType blocking(size, size, depth, 1, false); 00276 00277 internal::general_matrix_matrix_triangular_product<Index, 00278 typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, 00279 typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, 00280 IsRowMajor ? RowMajor : ColMajor, UpLo> 00281 ::run(size, depth, 00282 &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(), 00283 mat.data(), mat.outerStride(), actualAlpha, blocking); 00284 } 00285 }; 00286 00287 template<typename MatrixType, unsigned int UpLo> 00288 template<typename ProductType> 00289 TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha) 00290 { 00291 eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols()); 00292 00293 general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha); 00294 00295 return derived(); 00296 } 00297 00298 } // end namespace Eigen 00299 00300 #endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H