MOAB
4.9.3pre
|
Householder rank-revealing QR decomposition of a matrix with full pivoting. More...
#include <FullPivHouseholderQR.h>
Householder rank-revealing QR decomposition of a matrix with full pivoting.
_MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a rank-revealing QR decomposition of a matrix A into matrices P, P', Q and R such that
by using Householder transformations. Here, P and P' are permutation matrices, Q a unitary matrix and R an upper triangular matrix.
This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
Definition at line 55 of file FullPivHouseholderQR.h.
typedef internal::plain_col_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::ColVectorType |
Definition at line 78 of file FullPivHouseholderQR.h.
typedef internal::plain_diag_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::HCoeffsType |
Definition at line 72 of file FullPivHouseholderQR.h.
Definition at line 75 of file FullPivHouseholderQR.h.
typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> Eigen::FullPivHouseholderQR< _MatrixType >::MatrixQReturnType |
Definition at line 71 of file FullPivHouseholderQR.h.
typedef _MatrixType Eigen::FullPivHouseholderQR< _MatrixType >::MatrixType |
Definition at line 59 of file FullPivHouseholderQR.h.
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::FullPivHouseholderQR< _MatrixType >::PermutationType |
Definition at line 76 of file FullPivHouseholderQR.h.
typedef MatrixType::PlainObject Eigen::FullPivHouseholderQR< _MatrixType >::PlainObject |
Definition at line 79 of file FullPivHouseholderQR.h.
typedef MatrixType::RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::RealScalar |
Definition at line 68 of file FullPivHouseholderQR.h.
typedef internal::plain_row_type<MatrixType>::type Eigen::FullPivHouseholderQR< _MatrixType >::RowVectorType |
Definition at line 77 of file FullPivHouseholderQR.h.
typedef MatrixType::Scalar Eigen::FullPivHouseholderQR< _MatrixType >::Scalar |
Definition at line 67 of file FullPivHouseholderQR.h.
typedef MatrixType::StorageIndex Eigen::FullPivHouseholderQR< _MatrixType >::StorageIndex |
Definition at line 70 of file FullPivHouseholderQR.h.
anonymous enum |
Definition at line 60 of file FullPivHouseholderQR.h.
{ RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR | ( | ) | [inline] |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
Definition at line 86 of file FullPivHouseholderQR.h.
: m_qr(), m_hCoeffs(), m_rows_transpositions(), m_cols_transpositions(), m_cols_permutation(), m_temp(), m_isInitialized(false), m_usePrescribedThreshold(false) {}
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR | ( | Index | rows, |
Index | cols | ||
) | [inline] |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
Definition at line 102 of file FullPivHouseholderQR.h.
: m_qr(rows, cols), m_hCoeffs((std::min)(rows,cols)), m_rows_transpositions((std::min)(rows,cols)), m_cols_transpositions((std::min)(rows,cols)), m_cols_permutation(cols), m_temp(cols), m_isInitialized(false), m_usePrescribedThreshold(false) {}
Eigen::FullPivHouseholderQR< _MatrixType >::FullPivHouseholderQR | ( | const EigenBase< InputType > & | matrix | ) | [inline, explicit] |
Constructs a QR factorization from a given matrix.
This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:
FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); qr.compute(matrix);
Definition at line 125 of file FullPivHouseholderQR.h.
: m_qr(matrix.rows(), matrix.cols()), m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), m_cols_permutation(matrix.cols()), m_temp(matrix.cols()), m_isInitialized(false), m_usePrescribedThreshold(false) { compute(matrix.derived()); }
void Eigen::FullPivHouseholderQR< _MatrixType >::_solve_impl | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
Definition at line 526 of file FullPivHouseholderQR.h.
{ eigen_assert(rhs.rows() == rows()); const Index l_rank = rank(); // FIXME introduce nonzeroPivots() and use it here. and more generally, // make the same improvements in this dec as in FullPivLU. if(l_rank==0) { dst.setZero(); return; } typename RhsType::PlainObject c(rhs); Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols()); for (Index k = 0; k < l_rank; ++k) { Index remainingSize = rows()-k; c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); c.bottomRightCorner(remainingSize, rhs.cols()) .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0)); } m_qr.topLeftCorner(l_rank, l_rank) .template triangularView<Upper>() .solveInPlace(c.topRows(l_rank)); for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i); for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero(); }
MatrixType::RealScalar Eigen::FullPivHouseholderQR< MatrixType >::absDeterminant | ( | ) | const |
Definition at line 407 of file FullPivHouseholderQR.h.
{ using std::abs; eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return abs(m_qr.diagonal().prod()); }
static void Eigen::FullPivHouseholderQR< _MatrixType >::check_template_parameters | ( | ) | [inline, static, protected] |
Definition at line 386 of file FullPivHouseholderQR.h.
Index Eigen::FullPivHouseholderQR< _MatrixType >::cols | ( | void | ) | const [inline] |
Definition at line 301 of file FullPivHouseholderQR.h.
{ return m_qr.cols(); }
const PermutationType& Eigen::FullPivHouseholderQR< _MatrixType >::colsPermutation | ( | ) | const [inline] |
Definition at line 180 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_cols_permutation; }
FullPivHouseholderQR< MatrixType > & Eigen::FullPivHouseholderQR< MatrixType >::compute | ( | const EigenBase< InputType > & | matrix | ) |
Performs the QR factorization of the given matrix matrix. The result of the factorization is stored into *this
, and a reference to *this
is returned.
Definition at line 431 of file FullPivHouseholderQR.h.
{ check_template_parameters(); m_qr = matrix.derived(); computeInPlace(); return *this; }
void Eigen::FullPivHouseholderQR< MatrixType >::computeInPlace | ( | ) | [protected] |
Definition at line 443 of file FullPivHouseholderQR.h.
{ using std::abs; Index rows = m_qr.rows(); Index cols = m_qr.cols(); Index size = (std::min)(rows,cols); m_hCoeffs.resize(size); m_temp.resize(cols); m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size); m_rows_transpositions.resize(size); m_cols_transpositions.resize(size); Index number_of_transpositions = 0; RealScalar biggest(0); m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) m_maxpivot = RealScalar(0); for (Index k = 0; k < size; ++k) { Index row_of_biggest_in_corner, col_of_biggest_in_corner; typedef internal::scalar_score_coeff_op<Scalar> Scoring; typedef typename Scoring::result_type Score; Score score = m_qr.bottomRightCorner(rows-k, cols-k) .unaryExpr(Scoring()) .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); row_of_biggest_in_corner += k; col_of_biggest_in_corner += k; RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score); if(k==0) biggest = biggest_in_corner; // if the corner is negligible, then we have less than full rank, and we can finish early if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { m_nonzero_pivots = k; for(Index i = k; i < size; i++) { m_rows_transpositions.coeffRef(i) = i; m_cols_transpositions.coeffRef(i) = i; m_hCoeffs.coeffRef(i) = Scalar(0); } break; } m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; if(k != row_of_biggest_in_corner) { m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); ++number_of_transpositions; } if(k != col_of_biggest_in_corner) { m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); ++number_of_transpositions; } RealScalar beta; m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); m_qr.coeffRef(k,k) = beta; // remember the maximum absolute value of diagonal coefficients if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); m_qr.bottomRightCorner(rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); } m_cols_permutation.setIdentity(cols); for(Index k = 0; k < size; ++k) m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; }
Index Eigen::FullPivHouseholderQR< _MatrixType >::dimensionOfKernel | ( | ) | const [inline] |
Definition at line 245 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return cols() - rank(); }
const HCoeffsType& Eigen::FullPivHouseholderQR< _MatrixType >::hCoeffs | ( | ) | const [inline] |
Q
.For advanced uses only.
Definition at line 307 of file FullPivHouseholderQR.h.
{ return m_hCoeffs; }
const Inverse<FullPivHouseholderQR> Eigen::FullPivHouseholderQR< _MatrixType >::inverse | ( | ) | const [inline] |
Definition at line 294 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return Inverse<FullPivHouseholderQR>(*this); }
bool Eigen::FullPivHouseholderQR< _MatrixType >::isInjective | ( | ) | const [inline] |
Definition at line 258 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return rank() == cols(); }
bool Eigen::FullPivHouseholderQR< _MatrixType >::isInvertible | ( | ) | const [inline] |
Definition at line 283 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); }
bool Eigen::FullPivHouseholderQR< _MatrixType >::isSurjective | ( | ) | const [inline] |
Definition at line 271 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return rank() == rows(); }
MatrixType::RealScalar Eigen::FullPivHouseholderQR< MatrixType >::logAbsDeterminant | ( | ) | const |
Definition at line 416 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); }
FullPivHouseholderQR< MatrixType >::MatrixQReturnType Eigen::FullPivHouseholderQR< MatrixType >::matrixQ | ( | void | ) | const [inline] |
Definition at line 641 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); }
const MatrixType& Eigen::FullPivHouseholderQR< _MatrixType >::matrixQR | ( | ) | const [inline] |
Definition at line 170 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr; }
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::maxPivot | ( | ) | const [inline] |
Definition at line 376 of file FullPivHouseholderQR.h.
{ return m_maxpivot; }
Index Eigen::FullPivHouseholderQR< _MatrixType >::nonzeroPivots | ( | ) | const [inline] |
Definition at line 367 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "LU is not initialized."); return m_nonzero_pivots; }
Index Eigen::FullPivHouseholderQR< _MatrixType >::rank | ( | ) | const [inline] |
Definition at line 228 of file FullPivHouseholderQR.h.
{ using std::abs; eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); Index result = 0; for(Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); return result; }
Index Eigen::FullPivHouseholderQR< _MatrixType >::rows | ( | void | ) | const [inline] |
Definition at line 300 of file FullPivHouseholderQR.h.
{ return m_qr.rows(); }
const IntDiagSizeVectorType& Eigen::FullPivHouseholderQR< _MatrixType >::rowsTranspositions | ( | ) | const [inline] |
Definition at line 187 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rows_transpositions; }
FullPivHouseholderQR& Eigen::FullPivHouseholderQR< _MatrixType >::setThreshold | ( | const RealScalar & | threshold | ) | [inline] |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
Definition at line 326 of file FullPivHouseholderQR.h.
{ m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; return *this; }
FullPivHouseholderQR& Eigen::FullPivHouseholderQR< _MatrixType >::setThreshold | ( | Default_t | ) | [inline] |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
qr.setThreshold(Eigen::Default);
See the documentation of setThreshold(const RealScalar&).
Definition at line 341 of file FullPivHouseholderQR.h.
{ m_usePrescribedThreshold = false; return *this; }
const Solve<FullPivHouseholderQR, Rhs> Eigen::FullPivHouseholderQR< _MatrixType >::solve | ( | const MatrixBase< Rhs > & | b | ) | const [inline] |
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this
is the QR decomposition.
b | the right-hand-side of the equation to solve. |
Example:
Output:
Definition at line 158 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived()); }
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::threshold | ( | ) | const [inline] |
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).
Definition at line 351 of file FullPivHouseholderQR.h.
{ eigen_assert(m_isInitialized || m_usePrescribedThreshold); return m_usePrescribedThreshold ? m_prescribedThreshold // this formula comes from experimenting (see "LU precision tuning" thread on the list) // and turns out to be identical to Higham's formula used already in LDLt. : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); }
PermutationType Eigen::FullPivHouseholderQR< _MatrixType >::m_cols_permutation [protected] |
Definition at line 397 of file FullPivHouseholderQR.h.
IntDiagSizeVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_cols_transpositions [protected] |
Definition at line 396 of file FullPivHouseholderQR.h.
Index Eigen::FullPivHouseholderQR< _MatrixType >::m_det_pq [protected] |
Definition at line 403 of file FullPivHouseholderQR.h.
HCoeffsType Eigen::FullPivHouseholderQR< _MatrixType >::m_hCoeffs [protected] |
Definition at line 394 of file FullPivHouseholderQR.h.
bool Eigen::FullPivHouseholderQR< _MatrixType >::m_isInitialized [protected] |
Definition at line 399 of file FullPivHouseholderQR.h.
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_maxpivot [protected] |
Definition at line 400 of file FullPivHouseholderQR.h.
Index Eigen::FullPivHouseholderQR< _MatrixType >::m_nonzero_pivots [protected] |
Definition at line 401 of file FullPivHouseholderQR.h.
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_precision [protected] |
Definition at line 402 of file FullPivHouseholderQR.h.
RealScalar Eigen::FullPivHouseholderQR< _MatrixType >::m_prescribedThreshold [protected] |
Definition at line 400 of file FullPivHouseholderQR.h.
MatrixType Eigen::FullPivHouseholderQR< _MatrixType >::m_qr [protected] |
Definition at line 393 of file FullPivHouseholderQR.h.
IntDiagSizeVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_rows_transpositions [protected] |
Definition at line 395 of file FullPivHouseholderQR.h.
RowVectorType Eigen::FullPivHouseholderQR< _MatrixType >::m_temp [protected] |
Definition at line 398 of file FullPivHouseholderQR.h.
bool Eigen::FullPivHouseholderQR< _MatrixType >::m_usePrescribedThreshold [protected] |
Definition at line 399 of file FullPivHouseholderQR.h.