MOAB
4.9.3pre
|
Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
#include <ColPivHouseholderQR.h>
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
_MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that
by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.
This decomposition performs column pivoting in order to be rank-revealing and improve numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
Definition at line 46 of file ColPivHouseholderQR.h.
typedef internal::plain_diag_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::HCoeffsType |
Definition at line 63 of file ColPivHouseholderQR.h.
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> Eigen::ColPivHouseholderQR< _MatrixType >::HouseholderSequenceType |
Definition at line 68 of file ColPivHouseholderQR.h.
typedef internal::plain_row_type<MatrixType, Index>::type Eigen::ColPivHouseholderQR< _MatrixType >::IntRowVectorType |
Definition at line 65 of file ColPivHouseholderQR.h.
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> Eigen::ColPivHouseholderQR< _MatrixType >::MatrixQType |
Definition at line 62 of file ColPivHouseholderQR.h.
typedef _MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::MatrixType |
Definition at line 50 of file ColPivHouseholderQR.h.
typedef PermutationType::StorageIndex Eigen::ColPivHouseholderQR< _MatrixType >::PermIndexType [private] |
Definition at line 73 of file ColPivHouseholderQR.h.
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::ColPivHouseholderQR< _MatrixType >::PermutationType |
Definition at line 64 of file ColPivHouseholderQR.h.
typedef MatrixType::PlainObject Eigen::ColPivHouseholderQR< _MatrixType >::PlainObject |
Definition at line 69 of file ColPivHouseholderQR.h.
typedef internal::plain_row_type<MatrixType, RealScalar>::type Eigen::ColPivHouseholderQR< _MatrixType >::RealRowVectorType |
Definition at line 67 of file ColPivHouseholderQR.h.
typedef MatrixType::RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::RealScalar |
Definition at line 59 of file ColPivHouseholderQR.h.
typedef internal::plain_row_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::RowVectorType |
Definition at line 66 of file ColPivHouseholderQR.h.
typedef MatrixType::Scalar Eigen::ColPivHouseholderQR< _MatrixType >::Scalar |
Definition at line 58 of file ColPivHouseholderQR.h.
typedef MatrixType::StorageIndex Eigen::ColPivHouseholderQR< _MatrixType >::StorageIndex |
Definition at line 61 of file ColPivHouseholderQR.h.
anonymous enum |
Definition at line 51 of file ColPivHouseholderQR.h.
{ RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR | ( | ) | [inline] |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
Definition at line 83 of file ColPivHouseholderQR.h.
: m_qr(), m_hCoeffs(), m_colsPermutation(), m_colsTranspositions(), m_temp(), m_colNormsUpdated(), m_colNormsDirect(), m_isInitialized(false), m_usePrescribedThreshold(false) {}
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR | ( | Index | rows, |
Index | cols | ||
) | [inline] |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
Definition at line 100 of file ColPivHouseholderQR.h.
: m_qr(rows, cols), m_hCoeffs((std::min)(rows,cols)), m_colsPermutation(PermIndexType(cols)), m_colsTranspositions(cols), m_temp(cols), m_colNormsUpdated(cols), m_colNormsDirect(cols), m_isInitialized(false), m_usePrescribedThreshold(false) {}
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR | ( | const EigenBase< InputType > & | matrix | ) | [inline, explicit] |
Constructs a QR factorization from a given matrix.
This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:
ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); qr.compute(matrix);
Definition at line 124 of file ColPivHouseholderQR.h.
: m_qr(matrix.rows(), matrix.cols()), m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), m_colsPermutation(PermIndexType(matrix.cols())), m_colsTranspositions(matrix.cols()), m_temp(matrix.cols()), m_colNormsUpdated(matrix.cols()), m_colNormsDirect(matrix.cols()), m_isInitialized(false), m_usePrescribedThreshold(false) { compute(matrix.derived()); }
void Eigen::ColPivHouseholderQR< _MatrixType >::_solve_impl | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
Definition at line 569 of file ColPivHouseholderQR.h.
{ eigen_assert(rhs.rows() == rows()); const Index nonzero_pivots = nonzeroPivots(); if(nonzero_pivots == 0) { dst.setZero(); return; } typename RhsType::PlainObject c(rhs); // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs) .setLength(nonzero_pivots) .transpose() ); m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) .template triangularView<Upper>() .solveInPlace(c.topRows(nonzero_pivots)); for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); }
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::absDeterminant | ( | ) | const |
Definition at line 430 of file ColPivHouseholderQR.h.
{ using std::abs; eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return abs(m_qr.diagonal().prod()); }
static void Eigen::ColPivHouseholderQR< _MatrixType >::check_template_parameters | ( | ) | [inline, static, protected] |
Definition at line 409 of file ColPivHouseholderQR.h.
Index Eigen::ColPivHouseholderQR< _MatrixType >::cols | ( | void | ) | const [inline] |
Definition at line 310 of file ColPivHouseholderQR.h.
{ return m_qr.cols(); }
const PermutationType& Eigen::ColPivHouseholderQR< _MatrixType >::colsPermutation | ( | ) | const [inline] |
Definition at line 196 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_colsPermutation; }
ColPivHouseholderQR< MatrixType > & Eigen::ColPivHouseholderQR< MatrixType >::compute | ( | const EigenBase< InputType > & | matrix | ) |
Performs the QR factorization of the given matrix matrix. The result of the factorization is stored into *this
, and a reference to *this
is returned.
Definition at line 454 of file ColPivHouseholderQR.h.
{ check_template_parameters(); // the column permutation is stored as int indices, so just to be sure: eigen_assert(matrix.cols()<=NumTraits<int>::highest()); m_qr = matrix; computeInPlace(); return *this; }
void Eigen::ColPivHouseholderQR< MatrixType >::computeInPlace | ( | ) | [protected] |
Definition at line 469 of file ColPivHouseholderQR.h.
{ using std::abs; Index rows = m_qr.rows(); Index cols = m_qr.cols(); Index size = m_qr.diagonalSize(); m_hCoeffs.resize(size); m_temp.resize(cols); m_colsTranspositions.resize(m_qr.cols()); Index number_of_transpositions = 0; m_colNormsUpdated.resize(cols); m_colNormsDirect.resize(cols); for (Index k = 0; k < cols; ++k) { // colNormsDirect(k) caches the most recent directly computed norm of // column k. m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); } RealScalar threshold_helper = numext::abs2(m_colNormsUpdated.maxCoeff() * NumTraits<Scalar>::epsilon()) / RealScalar(rows); RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<Scalar>::epsilon()); m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) m_maxpivot = RealScalar(0); for(Index k = 0; k < size; ++k) { // first, we look up in our table m_colNormsUpdated which column has the biggest norm Index biggest_col_index; RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); biggest_col_index += k; // Track the number of meaningful pivots but do not stop the decomposition to make // sure that the initial matrix is properly reproduced. See bug 941. if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) m_nonzero_pivots = k; // apply the transposition to the columns m_colsTranspositions.coeffRef(k) = biggest_col_index; if(k != biggest_col_index) { m_qr.col(k).swap(m_qr.col(biggest_col_index)); std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); ++number_of_transpositions; } // generate the householder vector, store it below the diagonal RealScalar beta; m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); // apply the householder transformation to the diagonal coefficient m_qr.coeffRef(k,k) = beta; // remember the maximum absolute value of diagonal coefficients if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); // apply the householder transformation m_qr.bottomRightCorner(rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); // update our table of norms of the columns for (Index j = k + 1; j < cols; ++j) { // The following implements the stable norm downgrade step discussed in // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf // and used in LAPACK routines xGEQPF and xGEQP3. // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html if (m_colNormsUpdated.coeffRef(j) != 0) { RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); temp = temp < 0 ? 0 : temp; RealScalar temp2 = temp * numext::abs2(m_colNormsUpdated.coeffRef(j) / m_colNormsDirect.coeffRef(j)); if (temp2 <= norm_downdate_threshold) { // The updated norm has become too inaccurate so re-compute the column // norm directly. m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); } else { m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); } } } } m_colsPermutation.setIdentity(PermIndexType(cols)); for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k) m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k))); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; }
Index Eigen::ColPivHouseholderQR< _MatrixType >::dimensionOfKernel | ( | ) | const [inline] |
Definition at line 254 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return cols() - rank(); }
const HCoeffsType& Eigen::ColPivHouseholderQR< _MatrixType >::hCoeffs | ( | ) | const [inline] |
Q
.For advanced uses only.
Definition at line 316 of file ColPivHouseholderQR.h.
{ return m_hCoeffs; }
ColPivHouseholderQR< MatrixType >::HouseholderSequenceType Eigen::ColPivHouseholderQR< MatrixType >::householderQ | ( | ) | const |
qr.householderQ().setLength(qr.nonzeroPivots())
Definition at line 618 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); }
ComputationInfo Eigen::ColPivHouseholderQR< _MatrixType >::info | ( | ) | const [inline] |
Reports whether the QR factorization was succesful.
Success
. It is provided for compatibility with other factorization routines. Success
Definition at line 393 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "Decomposition is not initialized."); return Success; }
const Inverse<ColPivHouseholderQR> Eigen::ColPivHouseholderQR< _MatrixType >::inverse | ( | ) | const [inline] |
Definition at line 303 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return Inverse<ColPivHouseholderQR>(*this); }
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInjective | ( | ) | const [inline] |
Definition at line 267 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return rank() == cols(); }
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInvertible | ( | ) | const [inline] |
Definition at line 292 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); }
bool Eigen::ColPivHouseholderQR< _MatrixType >::isSurjective | ( | ) | const [inline] |
Definition at line 280 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return rank() == rows(); }
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::logAbsDeterminant | ( | ) | const |
Definition at line 439 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); }
HouseholderSequenceType Eigen::ColPivHouseholderQR< _MatrixType >::matrixQ | ( | ) | const [inline] |
Definition at line 164 of file ColPivHouseholderQR.h.
{ return householderQ(); }
const MatrixType& Eigen::ColPivHouseholderQR< _MatrixType >::matrixQR | ( | ) | const [inline] |
Definition at line 171 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_qr; }
const MatrixType& Eigen::ColPivHouseholderQR< _MatrixType >::matrixR | ( | ) | const [inline] |
matrixR().template triangularView<Upper>()
Definition at line 186 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_qr; }
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::maxPivot | ( | ) | const [inline] |
Definition at line 385 of file ColPivHouseholderQR.h.
{ return m_maxpivot; }
Index Eigen::ColPivHouseholderQR< _MatrixType >::nonzeroPivots | ( | ) | const [inline] |
Definition at line 376 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_nonzero_pivots; }
Index Eigen::ColPivHouseholderQR< _MatrixType >::rank | ( | ) | const [inline] |
Definition at line 237 of file ColPivHouseholderQR.h.
{ using std::abs; eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); Index result = 0; for(Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); return result; }
Index Eigen::ColPivHouseholderQR< _MatrixType >::rows | ( | void | ) | const [inline] |
Definition at line 309 of file ColPivHouseholderQR.h.
{ return m_qr.rows(); }
ColPivHouseholderQR& Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold | ( | const RealScalar & | threshold | ) | [inline] |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
Definition at line 335 of file ColPivHouseholderQR.h.
{ m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; return *this; }
ColPivHouseholderQR& Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold | ( | Default_t | ) | [inline] |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
qr.setThreshold(Eigen::Default);
See the documentation of setThreshold(const RealScalar&).
Definition at line 350 of file ColPivHouseholderQR.h.
{ m_usePrescribedThreshold = false; return *this; }
const Solve<ColPivHouseholderQR, Rhs> Eigen::ColPivHouseholderQR< _MatrixType >::solve | ( | const MatrixBase< Rhs > & | b | ) | const [inline] |
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.
b | the right-hand-side of the equation to solve. |
Example:
Output:
Definition at line 157 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived()); }
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::threshold | ( | ) | const [inline] |
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).
Definition at line 360 of file ColPivHouseholderQR.h.
{ eigen_assert(m_isInitialized || m_usePrescribedThreshold); return m_usePrescribedThreshold ? m_prescribedThreshold // this formula comes from experimenting (see "LU precision tuning" thread on the list) // and turns out to be identical to Higham's formula used already in LDLt. : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); }
friend class CompleteOrthogonalDecomposition< MatrixType > [friend] |
Definition at line 407 of file ColPivHouseholderQR.h.
RealRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colNormsDirect [protected] |
Definition at line 422 of file ColPivHouseholderQR.h.
RealRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colNormsUpdated [protected] |
Definition at line 421 of file ColPivHouseholderQR.h.
PermutationType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsPermutation [protected] |
Definition at line 418 of file ColPivHouseholderQR.h.
IntRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsTranspositions [protected] |
Definition at line 419 of file ColPivHouseholderQR.h.
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_det_pq [protected] |
Definition at line 426 of file ColPivHouseholderQR.h.
HCoeffsType Eigen::ColPivHouseholderQR< _MatrixType >::m_hCoeffs [protected] |
Definition at line 417 of file ColPivHouseholderQR.h.
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_isInitialized [protected] |
Definition at line 423 of file ColPivHouseholderQR.h.
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_maxpivot [protected] |
Definition at line 424 of file ColPivHouseholderQR.h.
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_nonzero_pivots [protected] |
Definition at line 425 of file ColPivHouseholderQR.h.
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_prescribedThreshold [protected] |
Definition at line 424 of file ColPivHouseholderQR.h.
MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::m_qr [protected] |
Definition at line 416 of file ColPivHouseholderQR.h.
RowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_temp [protected] |
Definition at line 420 of file ColPivHouseholderQR.h.
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_usePrescribedThreshold [protected] |
Definition at line 423 of file ColPivHouseholderQR.h.