MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2006 Lawrence Livermore National Laboratory. Under 00005 the terms of Contract B545069 with the University of Wisconsin -- 00006 Madison, Lawrence Livermore National Laboratory retains certain 00007 rights in this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2006) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 /** \file AddQualityMetric.cpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #include "Mesquite.hpp" 00033 #include "AddQualityMetric.hpp" 00034 #include "Vector3D.hpp" 00035 #include "Matrix3D.hpp" 00036 #include "MsqError.hpp" 00037 00038 namespace MBMesquite 00039 { 00040 00041 AddQualityMetric::AddQualityMetric( QualityMetric* qm1, QualityMetric* qm2, MsqError& err ) 00042 : metric1( *qm1 ), metric2( *qm2 ) 00043 { 00044 if( qm1->get_metric_type() != qm2->get_metric_type() || qm1->get_negate_flag() != qm2->get_negate_flag() ) 00045 { 00046 MSQ_SETERR( err )( "Incompatible metrics", MsqError::INVALID_ARG ); 00047 } 00048 } 00049 00050 AddQualityMetric::~AddQualityMetric() {} 00051 00052 QualityMetric::MetricType AddQualityMetric::get_metric_type() const 00053 { 00054 return metric1.get_metric_type(); 00055 } 00056 00057 std::string AddQualityMetric::get_name() const 00058 { 00059 return std::string( "Sum(" ) + metric1.get_name() + ", " + metric2.get_name() + ")"; 00060 } 00061 00062 int AddQualityMetric::get_negate_flag() const 00063 { 00064 return metric1.get_negate_flag(); 00065 } 00066 00067 void AddQualityMetric::get_evaluations( PatchData& pd, std::vector< size_t >& handles, bool free_only, MsqError& err ) 00068 { 00069 metric1.get_evaluations( pd, handles, free_only, err );MSQ_ERRRTN( err ); 00070 metric2.get_evaluations( pd, mHandles, free_only, err );MSQ_ERRRTN( err ); 00071 if( handles != mHandles ) 00072 { 00073 MSQ_SETERR( err )( "Incompatible metrics", MsqError::INVALID_STATE ); 00074 } 00075 } 00076 00077 bool AddQualityMetric::evaluate( PatchData& pd, size_t handle, double& value, MsqError& err ) 00078 { 00079 double val1, val2; 00080 bool rval1, rval2; 00081 rval1 = metric1.evaluate( pd, handle, val1, err ); 00082 MSQ_ERRZERO( err ); 00083 rval2 = metric2.evaluate( pd, handle, val2, err ); 00084 MSQ_ERRZERO( err ); 00085 value = val1 + val2; 00086 return rval1 && rval2; 00087 } 00088 00089 bool AddQualityMetric::evaluate_with_indices( PatchData& pd, 00090 size_t handle, 00091 double& value, 00092 std::vector< size_t >& indices, 00093 MsqError& err ) 00094 { 00095 double val1, val2; 00096 bool rval1, rval2; 00097 rval1 = metric1.evaluate_with_indices( pd, handle, val1, indices1, err ); 00098 MSQ_ERRZERO( err ); 00099 rval2 = metric2.evaluate_with_indices( pd, handle, val2, indices2, err ); 00100 MSQ_ERRZERO( err ); 00101 00102 indices.clear(); 00103 std::sort( indices1.begin(), indices1.end() ); 00104 std::sort( indices2.begin(), indices2.end() ); 00105 std::set_union( indices1.begin(), indices1.end(), indices2.begin(), indices2.end(), std::back_inserter( indices ) ); 00106 00107 value = val1 + val2; 00108 return rval1 && rval2; 00109 } 00110 00111 bool AddQualityMetric::evaluate_with_gradient( PatchData& pd, 00112 size_t handle, 00113 double& value, 00114 std::vector< size_t >& indices, 00115 std::vector< Vector3D >& gradient, 00116 MsqError& err ) 00117 { 00118 std::vector< size_t >::iterator i; 00119 size_t j; 00120 double val1, val2; 00121 bool rval1, rval2; 00122 rval1 = metric1.evaluate_with_gradient( pd, handle, val1, indices1, grad1, err ); 00123 MSQ_ERRZERO( err ); 00124 rval2 = metric2.evaluate_with_gradient( pd, handle, val2, indices2, grad2, err ); 00125 MSQ_ERRZERO( err ); 00126 00127 indices.resize( indices1.size() + indices2.size() ); 00128 i = std::copy( indices1.begin(), indices1.end(), indices.begin() ); 00129 std::copy( indices2.begin(), indices2.end(), i ); 00130 std::sort( indices.begin(), indices.end() ); 00131 indices.erase( std::unique( indices.begin(), indices.end() ), indices.end() ); 00132 00133 gradient.clear(); 00134 gradient.resize( indices.size(), Vector3D( 0.0 ) ); 00135 for( j = 0; j < indices1.size(); ++j ) 00136 { 00137 i = std::lower_bound( indices.begin(), indices.end(), indices1[j] ); 00138 size_t k = i - indices.begin(); 00139 gradient[k] += grad1[j]; 00140 } 00141 for( j = 0; j < indices2.size(); ++j ) 00142 { 00143 i = std::lower_bound( indices.begin(), indices.end(), indices2[j] ); 00144 size_t k = i - indices.begin(); 00145 gradient[k] += grad2[j]; 00146 } 00147 00148 value = val1 + val2; 00149 return rval1 && rval2; 00150 } 00151 00152 bool AddQualityMetric::evaluate_with_Hessian( PatchData& pd, 00153 size_t handle, 00154 double& value, 00155 std::vector< size_t >& indices, 00156 std::vector< Vector3D >& gradient, 00157 std::vector< Matrix3D >& Hessian, 00158 MsqError& err ) 00159 { 00160 std::vector< size_t >::iterator i; 00161 size_t j, r, c, n, h; 00162 double val1, val2; 00163 bool rval1, rval2; 00164 rval1 = metric1.evaluate_with_Hessian( pd, handle, val1, indices1, grad1, Hess1, err ); 00165 MSQ_ERRZERO( err ); 00166 rval2 = metric2.evaluate_with_Hessian( pd, handle, val2, indices2, grad2, Hess2, err ); 00167 MSQ_ERRZERO( err ); 00168 00169 indices.resize( indices1.size() + indices2.size() ); 00170 i = std::copy( indices1.begin(), indices1.end(), indices.begin() ); 00171 std::copy( indices2.begin(), indices2.end(), i ); 00172 std::sort( indices.begin(), indices.end() ); 00173 indices.erase( std::unique( indices.begin(), indices.end() ), indices.end() ); 00174 00175 gradient.clear(); 00176 gradient.resize( indices.size(), Vector3D( 0.0 ) ); 00177 for( j = 0; j < indices1.size(); ++j ) 00178 { 00179 i = std::lower_bound( indices.begin(), indices.end(), indices1[j] ); 00180 indices1[j] = i - indices.begin(); 00181 gradient[indices1[j]] += grad1[j]; 00182 } 00183 for( j = 0; j < indices2.size(); ++j ) 00184 { 00185 i = std::lower_bound( indices.begin(), indices.end(), indices2[j] ); 00186 indices2[j] = i - indices.begin(); 00187 gradient[indices2[j]] += grad2[j]; 00188 } 00189 00190 const size_t N = indices.size(); 00191 Hessian.clear(); 00192 Hessian.resize( N * ( N + 1 ) / 2, Matrix3D( 0.0 ) ); 00193 00194 n = indices1.size(); 00195 h = 0; 00196 for( r = 0; r < n; ++r ) 00197 { 00198 const size_t nr = indices1[r]; 00199 for( c = r; c < n; ++c ) 00200 { 00201 const size_t nc = indices1[c]; 00202 if( nr <= nc ) 00203 Hessian[N * nr - nr * ( nr + 1 ) / 2 + nc] += Hess1[h++]; 00204 else 00205 Hessian[N * nc - nc * ( nc + 1 ) / 2 + nr].plus_transpose_equal( Hess1[h++] ); 00206 } 00207 } 00208 00209 n = indices2.size(); 00210 h = 0; 00211 for( r = 0; r < n; ++r ) 00212 { 00213 const size_t nr = indices2[r]; 00214 for( c = r; c < n; ++c ) 00215 { 00216 const size_t nc = indices2[c]; 00217 if( nr <= nc ) 00218 Hessian[N * nr - nr * ( nr + 1 ) / 2 + nc] += Hess2[h++]; 00219 else 00220 Hessian[N * nc - nc * ( nc + 1 ) / 2 + nr].plus_transpose_equal( Hess2[h++] ); 00221 } 00222 } 00223 00224 value = val1 + val2; 00225 return rval1 && rval2; 00226 } 00227 00228 } // namespace MBMesquite