MOAB
4.9.3pre
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2008-2010 Gael Guennebaud <[email protected]> 00005 // Copyright (C) 2010 Jitse Niesen <[email protected]> 00006 // 00007 // This Source Code Form is subject to the terms of the Mozilla 00008 // Public License v. 2.0. If a copy of the MPL was not distributed 00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00010 00011 #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H 00012 #define EIGEN_SELFADJOINTEIGENSOLVER_H 00013 00014 #include "./Tridiagonalization.h" 00015 00016 namespace Eigen { 00017 00018 template<typename _MatrixType> 00019 class GeneralizedSelfAdjointEigenSolver; 00020 00021 namespace internal { 00022 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues; 00023 template<typename MatrixType, typename DiagType, typename SubDiagType> 00024 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); 00025 } 00026 00070 template<typename _MatrixType> class SelfAdjointEigenSolver 00071 { 00072 public: 00073 00074 typedef _MatrixType MatrixType; 00075 enum { 00076 Size = MatrixType::RowsAtCompileTime, 00077 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 00078 Options = MatrixType::Options, 00079 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 00080 }; 00081 00083 typedef typename MatrixType::Scalar Scalar; 00084 typedef Eigen::Index Index; 00085 00086 typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType; 00087 00094 typedef typename NumTraits<Scalar>::Real RealScalar; 00095 00096 friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>; 00097 00103 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; 00104 typedef Tridiagonalization<MatrixType> TridiagonalizationType; 00105 typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; 00106 00117 EIGEN_DEVICE_FUNC 00118 SelfAdjointEigenSolver() 00119 : m_eivec(), 00120 m_eivalues(), 00121 m_subdiag(), 00122 m_isInitialized(false) 00123 { } 00124 00137 EIGEN_DEVICE_FUNC 00138 explicit SelfAdjointEigenSolver(Index size) 00139 : m_eivec(size, size), 00140 m_eivalues(size), 00141 m_subdiag(size > 1 ? size - 1 : 1), 00142 m_isInitialized(false) 00143 {} 00144 00160 template<typename InputType> 00161 EIGEN_DEVICE_FUNC 00162 explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors) 00163 : m_eivec(matrix.rows(), matrix.cols()), 00164 m_eivalues(matrix.cols()), 00165 m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), 00166 m_isInitialized(false) 00167 { 00168 compute(matrix.derived(), options); 00169 } 00170 00201 template<typename InputType> 00202 EIGEN_DEVICE_FUNC 00203 SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors); 00204 00223 EIGEN_DEVICE_FUNC 00224 SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); 00225 00238 SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); 00239 00258 EIGEN_DEVICE_FUNC 00259 const EigenvectorsType& eigenvectors() const 00260 { 00261 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 00262 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 00263 return m_eivec; 00264 } 00265 00281 EIGEN_DEVICE_FUNC 00282 const RealVectorType& eigenvalues() const 00283 { 00284 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 00285 return m_eivalues; 00286 } 00287 00305 EIGEN_DEVICE_FUNC 00306 MatrixType operatorSqrt() const 00307 { 00308 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 00309 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 00310 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 00311 } 00312 00330 EIGEN_DEVICE_FUNC 00331 MatrixType operatorInverseSqrt() const 00332 { 00333 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 00334 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 00335 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 00336 } 00337 00342 EIGEN_DEVICE_FUNC 00343 ComputationInfo info() const 00344 { 00345 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 00346 return m_info; 00347 } 00348 00354 static const int m_maxIterations = 30; 00355 00356 protected: 00357 static void check_template_parameters() 00358 { 00359 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 00360 } 00361 00362 EigenvectorsType m_eivec; 00363 RealVectorType m_eivalues; 00364 typename TridiagonalizationType::SubDiagonalType m_subdiag; 00365 ComputationInfo m_info; 00366 bool m_isInitialized; 00367 bool m_eigenvectorsOk; 00368 }; 00369 00370 namespace internal { 00391 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> 00392 EIGEN_DEVICE_FUNC 00393 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); 00394 } 00395 00396 template<typename MatrixType> 00397 template<typename InputType> 00398 EIGEN_DEVICE_FUNC 00399 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 00400 ::compute(const EigenBase<InputType>& a_matrix, int options) 00401 { 00402 check_template_parameters(); 00403 00404 const InputType &matrix(a_matrix.derived()); 00405 00406 using std::abs; 00407 eigen_assert(matrix.cols() == matrix.rows()); 00408 eigen_assert((options&~(EigVecMask|GenEigMask))==0 00409 && (options&EigVecMask)!=EigVecMask 00410 && "invalid option parameter"); 00411 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 00412 Index n = matrix.cols(); 00413 m_eivalues.resize(n,1); 00414 00415 if(n==1) 00416 { 00417 m_eivalues.coeffRef(0,0) = numext::real(matrix(0,0)); 00418 if(computeEigenvectors) 00419 m_eivec.setOnes(n,n); 00420 m_info = Success; 00421 m_isInitialized = true; 00422 m_eigenvectorsOk = computeEigenvectors; 00423 return *this; 00424 } 00425 00426 // declare some aliases 00427 RealVectorType& diag = m_eivalues; 00428 EigenvectorsType& mat = m_eivec; 00429 00430 // map the matrix coefficients to [-1:1] to avoid over- and underflow. 00431 mat = matrix.template triangularView<Lower>(); 00432 RealScalar scale = mat.cwiseAbs().maxCoeff(); 00433 if(scale==RealScalar(0)) scale = RealScalar(1); 00434 mat.template triangularView<Lower>() /= scale; 00435 m_subdiag.resize(n-1); 00436 internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors); 00437 00438 m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); 00439 00440 // scale back the eigen values 00441 m_eivalues *= scale; 00442 00443 m_isInitialized = true; 00444 m_eigenvectorsOk = computeEigenvectors; 00445 return *this; 00446 } 00447 00448 template<typename MatrixType> 00449 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 00450 ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) 00451 { 00452 //TODO : Add an option to scale the values beforehand 00453 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 00454 00455 m_eivalues = diag; 00456 m_subdiag = subdiag; 00457 if (computeEigenvectors) 00458 { 00459 m_eivec.setIdentity(diag.size(), diag.size()); 00460 } 00461 m_info = computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); 00462 00463 m_isInitialized = true; 00464 m_eigenvectorsOk = computeEigenvectors; 00465 return *this; 00466 } 00467 00468 namespace internal { 00480 template<typename MatrixType, typename DiagType, typename SubDiagType> 00481 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) 00482 { 00483 using std::abs; 00484 00485 ComputationInfo info; 00486 typedef typename MatrixType::Scalar Scalar; 00487 00488 Index n = diag.size(); 00489 Index end = n-1; 00490 Index start = 0; 00491 Index iter = 0; // total number of iterations 00492 00493 typedef typename DiagType::RealScalar RealScalar; 00494 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); 00495 00496 while (end>0) 00497 { 00498 for (Index i = start; i<end; ++i) 00499 if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1]))) || abs(subdiag[i]) <= considerAsZero) 00500 subdiag[i] = 0; 00501 00502 // find the largest unreduced block 00503 while (end>0 && subdiag[end-1]==0) 00504 { 00505 end--; 00506 } 00507 if (end<=0) 00508 break; 00509 00510 // if we spent too many iterations, we give up 00511 iter++; 00512 if(iter > maxIterations * n) break; 00513 00514 start = end - 1; 00515 while (start>0 && subdiag[start-1]!=0) 00516 start--; 00517 00518 internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); 00519 } 00520 if (iter <= maxIterations * n) 00521 info = Success; 00522 else 00523 info = NoConvergence; 00524 00525 // Sort eigenvalues and corresponding vectors. 00526 // TODO make the sort optional ? 00527 // TODO use a better sort algorithm !! 00528 if (info == Success) 00529 { 00530 for (Index i = 0; i < n-1; ++i) 00531 { 00532 Index k; 00533 diag.segment(i,n-i).minCoeff(&k); 00534 if (k > 0) 00535 { 00536 std::swap(diag[i], diag[k+i]); 00537 if(computeEigenvectors) 00538 eivec.col(i).swap(eivec.col(k+i)); 00539 } 00540 } 00541 } 00542 return info; 00543 } 00544 00545 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues 00546 { 00547 EIGEN_DEVICE_FUNC 00548 static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) 00549 { eig.compute(A,options); } 00550 }; 00551 00552 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false> 00553 { 00554 typedef typename SolverType::MatrixType MatrixType; 00555 typedef typename SolverType::RealVectorType VectorType; 00556 typedef typename SolverType::Scalar Scalar; 00557 typedef typename SolverType::EigenvectorsType EigenvectorsType; 00558 00559 00564 EIGEN_DEVICE_FUNC 00565 static inline void computeRoots(const MatrixType& m, VectorType& roots) 00566 { 00567 EIGEN_USING_STD_MATH(sqrt) 00568 EIGEN_USING_STD_MATH(atan2) 00569 EIGEN_USING_STD_MATH(cos) 00570 EIGEN_USING_STD_MATH(sin) 00571 const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0); 00572 const Scalar s_sqrt3 = sqrt(Scalar(3.0)); 00573 00574 // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The 00575 // eigenvalues are the roots to this equation, all guaranteed to be 00576 // real-valued, because the matrix is symmetric. 00577 Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); 00578 Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); 00579 Scalar c2 = m(0,0) + m(1,1) + m(2,2); 00580 00581 // Construct the parameters used in classifying the roots of the equation 00582 // and in solving the equation for the roots in closed form. 00583 Scalar c2_over_3 = c2*s_inv3; 00584 Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; 00585 a_over_3 = numext::maxi(a_over_3, Scalar(0)); 00586 00587 Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); 00588 00589 Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; 00590 q = numext::maxi(q, Scalar(0)); 00591 00592 // Compute the eigenvalues by solving for the roots of the polynomial. 00593 Scalar rho = sqrt(a_over_3); 00594 Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] 00595 Scalar cos_theta = cos(theta); 00596 Scalar sin_theta = sin(theta); 00597 // roots are already sorted, since cos is monotonically decreasing on [0, pi] 00598 roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) 00599 roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) 00600 roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; 00601 } 00602 00603 EIGEN_DEVICE_FUNC 00604 static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative) 00605 { 00606 using std::abs; 00607 Index i0; 00608 // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): 00609 mat.diagonal().cwiseAbs().maxCoeff(&i0); 00610 // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, 00611 // so let's save it: 00612 representative = mat.col(i0); 00613 Scalar n0, n1; 00614 VectorType c0, c1; 00615 n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); 00616 n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); 00617 if(n0>n1) res = c0/std::sqrt(n0); 00618 else res = c1/std::sqrt(n1); 00619 00620 return true; 00621 } 00622 00623 EIGEN_DEVICE_FUNC 00624 static inline void run(SolverType& solver, const MatrixType& mat, int options) 00625 { 00626 eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); 00627 eigen_assert((options&~(EigVecMask|GenEigMask))==0 00628 && (options&EigVecMask)!=EigVecMask 00629 && "invalid option parameter"); 00630 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 00631 00632 EigenvectorsType& eivecs = solver.m_eivec; 00633 VectorType& eivals = solver.m_eivalues; 00634 00635 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. 00636 Scalar shift = mat.trace() / Scalar(3); 00637 // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later 00638 MatrixType scaledMat = mat.template selfadjointView<Lower>(); 00639 scaledMat.diagonal().array() -= shift; 00640 Scalar scale = scaledMat.cwiseAbs().maxCoeff(); 00641 if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations 00642 00643 // compute the eigenvalues 00644 computeRoots(scaledMat,eivals); 00645 00646 // compute the eigenvectors 00647 if(computeEigenvectors) 00648 { 00649 if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon()) 00650 { 00651 // All three eigenvalues are numerically the same 00652 eivecs.setIdentity(); 00653 } 00654 else 00655 { 00656 MatrixType tmp; 00657 tmp = scaledMat; 00658 00659 // Compute the eigenvector of the most distinct eigenvalue 00660 Scalar d0 = eivals(2) - eivals(1); 00661 Scalar d1 = eivals(1) - eivals(0); 00662 Index k(0), l(2); 00663 if(d0 > d1) 00664 { 00665 numext::swap(k,l); 00666 d0 = d1; 00667 } 00668 00669 // Compute the eigenvector of index k 00670 { 00671 tmp.diagonal().array () -= eivals(k); 00672 // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. 00673 extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); 00674 } 00675 00676 // Compute eigenvector of index l 00677 if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1) 00678 { 00679 // If d0 is too small, then the two other eigenvalues are numerically the same, 00680 // and thus we only have to ortho-normalize the near orthogonal vector we saved above. 00681 eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); 00682 eivecs.col(l).normalize(); 00683 } 00684 else 00685 { 00686 tmp = scaledMat; 00687 tmp.diagonal().array () -= eivals(l); 00688 00689 VectorType dummy; 00690 extract_kernel(tmp, eivecs.col(l), dummy); 00691 } 00692 00693 // Compute last eigenvector from the other two 00694 eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); 00695 } 00696 } 00697 00698 // Rescale back to the original size. 00699 eivals *= scale; 00700 eivals.array() += shift; 00701 00702 solver.m_info = Success; 00703 solver.m_isInitialized = true; 00704 solver.m_eigenvectorsOk = computeEigenvectors; 00705 } 00706 }; 00707 00708 // 2x2 direct eigenvalues decomposition, code from Hauke Heibel 00709 template<typename SolverType> 00710 struct direct_selfadjoint_eigenvalues<SolverType,2,false> 00711 { 00712 typedef typename SolverType::MatrixType MatrixType; 00713 typedef typename SolverType::RealVectorType VectorType; 00714 typedef typename SolverType::Scalar Scalar; 00715 typedef typename SolverType::EigenvectorsType EigenvectorsType; 00716 00717 EIGEN_DEVICE_FUNC 00718 static inline void computeRoots(const MatrixType& m, VectorType& roots) 00719 { 00720 using std::sqrt; 00721 const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); 00722 const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); 00723 roots(0) = t1 - t0; 00724 roots(1) = t1 + t0; 00725 } 00726 00727 EIGEN_DEVICE_FUNC 00728 static inline void run(SolverType& solver, const MatrixType& mat, int options) 00729 { 00730 EIGEN_USING_STD_MATH(sqrt); 00731 EIGEN_USING_STD_MATH(abs); 00732 00733 eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); 00734 eigen_assert((options&~(EigVecMask|GenEigMask))==0 00735 && (options&EigVecMask)!=EigVecMask 00736 && "invalid option parameter"); 00737 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 00738 00739 EigenvectorsType& eivecs = solver.m_eivec; 00740 VectorType& eivals = solver.m_eivalues; 00741 00742 // map the matrix coefficients to [-1:1] to avoid over- and underflow. 00743 Scalar scale = mat.cwiseAbs().maxCoeff(); 00744 scale = numext::maxi(scale,Scalar(1)); 00745 MatrixType scaledMat = mat / scale; 00746 00747 // Compute the eigenvalues 00748 computeRoots(scaledMat,eivals); 00749 00750 // compute the eigen vectors 00751 if(computeEigenvectors) 00752 { 00753 if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon()) 00754 { 00755 eivecs.setIdentity(); 00756 } 00757 else 00758 { 00759 scaledMat.diagonal().array () -= eivals(1); 00760 Scalar a2 = numext::abs2(scaledMat(0,0)); 00761 Scalar c2 = numext::abs2(scaledMat(1,1)); 00762 Scalar b2 = numext::abs2(scaledMat(1,0)); 00763 if(a2>c2) 00764 { 00765 eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); 00766 eivecs.col(1) /= sqrt(a2+b2); 00767 } 00768 else 00769 { 00770 eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); 00771 eivecs.col(1) /= sqrt(c2+b2); 00772 } 00773 00774 eivecs.col(0) << eivecs.col(1).unitOrthogonal(); 00775 } 00776 } 00777 00778 // Rescale back to the original size. 00779 eivals *= scale; 00780 00781 solver.m_info = Success; 00782 solver.m_isInitialized = true; 00783 solver.m_eigenvectorsOk = computeEigenvectors; 00784 } 00785 }; 00786 00787 } 00788 00789 template<typename MatrixType> 00790 EIGEN_DEVICE_FUNC 00791 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 00792 ::computeDirect(const MatrixType& matrix, int options) 00793 { 00794 internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options); 00795 return *this; 00796 } 00797 00798 namespace internal { 00799 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> 00800 EIGEN_DEVICE_FUNC 00801 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) 00802 { 00803 using std::abs; 00804 RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); 00805 RealScalar e = subdiag[end-1]; 00806 // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still 00807 // underflow thus leading to inf/NaN values when using the following commented code: 00808 // RealScalar e2 = numext::abs2(subdiag[end-1]); 00809 // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); 00810 // This explain the following, somewhat more complicated, version: 00811 RealScalar mu = diag[end]; 00812 if(td==0) 00813 mu -= abs(e); 00814 else 00815 { 00816 RealScalar e2 = numext::abs2(subdiag[end-1]); 00817 RealScalar h = numext::hypot(td,e); 00818 if(e2==0) mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h); 00819 else mu -= e2 / (td + (td>0 ? h : -h)); 00820 } 00821 00822 RealScalar x = diag[start] - mu; 00823 RealScalar z = subdiag[start]; 00824 for (Index k = start; k < end; ++k) 00825 { 00826 JacobiRotation<RealScalar> rot; 00827 rot.makeGivens(x, z); 00828 00829 // do T = G' T G 00830 RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; 00831 RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; 00832 00833 diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); 00834 diag[k+1] = rot.s() * sdk + rot.c() * dkp1; 00835 subdiag[k] = rot.c() * sdk - rot.s() * dkp1; 00836 00837 00838 if (k > start) 00839 subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; 00840 00841 x = subdiag[k]; 00842 00843 if (k < end - 1) 00844 { 00845 z = -rot.s() * subdiag[k+1]; 00846 subdiag[k + 1] = rot.c() * subdiag[k+1]; 00847 } 00848 00849 // apply the givens rotation to the unit matrix Q = Q * G 00850 if (matrixQ) 00851 { 00852 // FIXME if StorageOrder == RowMajor this operation is not very efficient 00853 Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n); 00854 q.applyOnTheRight(k,k+1,rot); 00855 } 00856 } 00857 } 00858 00859 } // end namespace internal 00860 00861 } // end namespace Eigen 00862 00863 #endif // EIGEN_SELFADJOINTEIGENSOLVER_H