![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /*
00002 * Driver to test coupling online, without using IO hdf5 files
00003 * Will instantiate 2 different meshes, that cover the same domain; reports in the end the L
00004 * infinity norm of a field
00005 *
00006 * will report time to build the meshes, instantiate coupler, locate points and interpolate
00007 * M and K are options for number of parts in x and z directions
00008 *
00009 * partitions are ordered lexicographically, (MxNxK)
00010 *
00011 * it needs to be np = MxNxK
00012 *
00013 * if M==K, then the partitions are perfectly aligned
00014 *
00015 * the second mesh is ordered (KxNxM), so if you want them to not be perfectly aligned, make M and
00016 * K different
00017 *
00018 * for example, run with
00019 * M = 16, N=K=1, will verify slabs
00020 *
00021 * -b controls the number of elements in each partition
00022 *
00023 * example
00024 *
00025 * mpiexec -np 16 CoupleMGen -K 4 -N 4
00026 *
00027 * Right now, to build, it needs to install MOAB; coupler is harder if not installed (would need to
00028 * add
00029 * ../tools/mbcoupler , etc, to include and lib paths)
00030 *
00031 *
00032 */
00033 // MOAB includes
00034 #include "moab/ParallelComm.hpp"
00035 #include "MBParallelConventions.h"
00036 #include "moab/Core.hpp"
00037 #include "mbcoupler/Coupler.hpp"
00038 #include "moab_mpi.h"
00039 #include "mbcoupler/ElemUtil.hpp"
00040 #include "moab/MeshGeneration.hpp"
00041 #include "moab/ProgOptions.hpp"
00042
00043 using namespace moab;
00044 using std::string;
00045
00046 double physField( double x, double y, double z )
00047 {
00048
00049 double out = sin( M_PI * x ) * cos( M_PI * y ) * sin( M_PI * z );
00050
00051 return out;
00052 }
00053
00054 int main( int argc, char* argv[] )
00055 {
00056 int proc_id = 0, size = 1;
00057
00058 MPI_Init( &argc, &argv );
00059 MPI_Comm_rank( MPI_COMM_WORLD, &proc_id );
00060 MPI_Comm_size( MPI_COMM_WORLD, &size );
00061
00062 Core mcore;
00063 Interface* mb = &mcore;
00064 EntityHandle fileset1, fileset2; // for 2 different meshes
00065 MeshGeneration::BrickOpts opts;
00066 // default options
00067 opts.A = opts.B = opts.C = 1;
00068 opts.M = opts.N = opts.K = 1;
00069 opts.blockSize = 4;
00070 opts.xsize = opts.ysize = opts.zsize = 1.;
00071 opts.ui = CartVect( 1., 0, 0. );
00072 opts.uj = CartVect( 0., 1., 0. );
00073 opts.uk = CartVect( 0., 0., 1. );
00074 opts.newMergeMethod = opts.quadratic = opts.keep_skins = opts.tetra = false;
00075 opts.adjEnts = opts.parmerge = false;
00076 opts.GL = 0;
00077
00078 ProgOptions popts;
00079
00080 popts.addOpt< int >( string( "blockSize,b" ), string( "Block size of mesh (default=4)" ), &opts.blockSize );
00081 popts.addOpt< int >( string( "xproc,M" ), string( "Number of processors in x dir (default=1)" ), &opts.M );
00082 popts.addOpt< int >( string( "yproc,N" ), string( "Number of processors in y dir (default=1)" ), &opts.N );
00083 popts.addOpt< int >( string( "zproc,K" ), string( "Number of processors in z dir (default=1)" ), &opts.K );
00084
00085 popts.addOpt< int >( string( "xblocks,A" ), string( "Number of blocks on a task in x dir (default=2)" ), &opts.A );
00086 popts.addOpt< int >( string( "yblocks,B" ), string( "Number of blocks on a task in y dir (default=2)" ), &opts.B );
00087 popts.addOpt< int >( string( "zblocks,C" ), string( "Number of blocks on a task in x dir (default=2)" ), &opts.C );
00088
00089 popts.addOpt< double >( string( "xsize,x" ), string( "Total size in x direction (default=1.)" ), &opts.xsize );
00090 popts.addOpt< double >( string( "ysize,y" ), string( "Total size in y direction (default=1.)" ), &opts.ysize );
00091 popts.addOpt< double >( string( "zsize,z" ), string( "Total size in z direction (default=1.)" ), &opts.zsize );
00092
00093 popts.addOpt< void >( "newMerge,w", "use new merging method", &opts.newMergeMethod );
00094
00095 popts.addOpt< void >( "quadratic,q", "use hex 27 elements", &opts.quadratic );
00096
00097 popts.addOpt< void >( "keep_skins,k", "keep skins with shared entities", &opts.keep_skins );
00098
00099 popts.addOpt< void >( "tetrahedrons,t", "generate tetrahedrons", &opts.tetra );
00100
00101 popts.addOpt< void >( "faces_edges,f", "create all faces and edges", &opts.adjEnts );
00102
00103 popts.addOpt< int >( string( "ghost_layers,g" ), string( "Number of ghost layers (default=0)" ), &opts.GL );
00104
00105 popts.addOpt< void >( "parallel_merge,p", "use parallel mesh merge, not vertex ID based merge", &opts.parmerge );
00106
00107 Coupler::Method method = Coupler::LINEAR_FE;
00108
00109 double toler = 1.e-6;
00110 popts.addOpt< double >( string( "eps,e" ), string( "tolerance for coupling, used in locating points" ), &toler );
00111
00112 bool writeMeshes = false;
00113 popts.addOpt< void >( "print,p", "write meshes", &writeMeshes );
00114
00115 popts.parseCommandLine( argc, argv );
00116
00117 double start_time = MPI_Wtime();
00118
00119 ErrorCode rval = mb->create_meshset( MESHSET_SET, fileset1 );MB_CHK_ERR( rval );
00120 rval = mb->create_meshset( MESHSET_SET, fileset2 );MB_CHK_ERR( rval );
00121
00122 ParallelComm* pc1 = new ParallelComm( mb, MPI_COMM_WORLD );
00123 MeshGeneration* mgen1 = new MeshGeneration( mb, pc1, fileset1 );
00124
00125 rval = mgen1->BrickInstance( opts );MB_CHK_ERR( rval ); // this will generate first mesh on fileset1
00126
00127 double instance_time = MPI_Wtime();
00128 double current = instance_time;
00129 if( !proc_id ) std::cout << " instantiate first mesh " << instance_time - start_time << "\n";
00130 // set an interpolation tag on source mesh, from phys field
00131 std::string interpTag( "interp_tag" );
00132 Tag tag;
00133 rval = mb->tag_get_handle( interpTag.c_str(), 1, MB_TYPE_DOUBLE, tag, MB_TAG_CREAT | MB_TAG_DENSE );MB_CHK_ERR( rval );
00134
00135 Range src_elems;
00136 rval = pc1->get_part_entities( src_elems, 3 );MB_CHK_ERR( rval );
00137 Range src_verts;
00138 rval = mb->get_connectivity( src_elems, src_verts );MB_CHK_ERR( rval );
00139 for( Range::iterator vit = src_verts.begin(); vit != src_verts.end(); ++vit )
00140 {
00141 EntityHandle vert = *vit; //?
00142
00143 double vertPos[3];
00144 mb->get_coords( &vert, 1, vertPos );
00145
00146 double fieldValue = physField( vertPos[0], vertPos[1], vertPos[2] );
00147
00148 rval = mb->tag_set_data( tag, &vert, 1, &fieldValue );MB_CHK_ERR( rval );
00149 }
00150
00151 double setTag_time = MPI_Wtime();
00152 if( !proc_id ) std::cout << " set tag " << setTag_time - current;
00153 current = instance_time;
00154 // change some options, so it is a different mesh
00155 int tmp1 = opts.K;
00156 opts.K = opts.M;
00157 opts.M = tmp1; // swap (opts.K, opts.M)
00158 opts.tetra = !opts.tetra;
00159 opts.blockSize++;
00160
00161 ParallelComm* pc2 = new ParallelComm( mb, MPI_COMM_WORLD );
00162 MeshGeneration* mgen2 = new MeshGeneration( mb, pc2, fileset2 );
00163
00164 rval = mgen2->BrickInstance( opts );MB_CHK_ERR( rval ); // this will generate second mesh on fileset2
00165
00166 double instance_second = MPI_Wtime();
00167 if( !proc_id ) std::cout << " instance second mesh" << instance_second - current << "\n";
00168 current = instance_second;
00169
00170 // test the sets are fine
00171 if( writeMeshes )
00172 {
00173 rval = mb->write_file( "mesh1.h5m", 0, ";;PARALLEL=WRITE_PART;CPUTIME;PARALLEL_COMM=0;", &fileset1, 1 );MB_CHK_SET_ERR( rval, "Can't write in parallel mesh 1" );
00174 rval = mb->write_file( "mesh2.h5m", 0, ";;PARALLEL=WRITE_PART;CPUTIME;PARALLEL_COMM=1;", &fileset2, 1 );MB_CHK_SET_ERR( rval, "Can't write in parallel mesh 1" );
00175 double write_files = MPI_Wtime();
00176 if( !proc_id ) std::cout << " write files " << write_files - current << "\n";
00177 current = write_files;
00178 }
00179
00180 // Instantiate a coupler, which also initializes the tree
00181 Coupler mbc( mb, pc1, src_elems, 0 );
00182
00183 double instancecoupler = MPI_Wtime();
00184 if( !proc_id ) std::cout << " instance coupler " << instancecoupler - current << "\n";
00185 current = instancecoupler;
00186
00187 // Get points from the target mesh to interpolate
00188 // We have to treat differently the case when the target is a spectral mesh
00189 // In that case, the points of interest are the GL points, not the vertex nodes
00190 std::vector< double > vpos; // This will have the positions we are interested in
00191 int numPointsOfInterest = 0;
00192
00193 Range targ_elems;
00194 Range targ_verts;
00195
00196 // First get all vertices adj to partition entities in target mesh
00197 rval = pc2->get_part_entities( targ_elems, 3 );MB_CHK_ERR( rval );
00198
00199 rval = mb->get_adjacencies( targ_elems, 0, false, targ_verts, Interface::UNION );MB_CHK_ERR( rval );
00200 Range tmp_verts;
00201 // Then get non-owned verts and subtract
00202 rval = pc2->get_pstatus_entities( 0, PSTATUS_NOT_OWNED, tmp_verts );MB_CHK_ERR( rval );
00203 targ_verts = subtract( targ_verts, tmp_verts );
00204 // get position of these entities; these are the target points
00205 numPointsOfInterest = (int)targ_verts.size();
00206 vpos.resize( 3 * targ_verts.size() );
00207 rval = mb->get_coords( targ_verts, &vpos[0] );MB_CHK_ERR( rval );
00208 // Locate those points in the source mesh
00209 // std::cout<<"rank "<< proc_id<< " points of interest: " << numPointsOfInterest << "\n";
00210 rval = mbc.locate_points( &vpos[0], numPointsOfInterest, 0, toler );MB_CHK_ERR( rval );
00211
00212 double locatetime = MPI_Wtime();
00213 if( !proc_id ) std::cout << " locate points: " << locatetime - current << "\n";
00214 current = locatetime;
00215
00216 // Now interpolate tag onto target points
00217 std::vector< double > field( numPointsOfInterest );
00218
00219 rval = mbc.interpolate( method, interpTag, &field[0] );MB_CHK_ERR( rval );
00220
00221 // compare with the actual phys field
00222 double err_max = 0;
00223 for( int i = 0; i < numPointsOfInterest; i++ )
00224 {
00225 double trval = physField( vpos[3 * i], vpos[3 * i + 1], vpos[3 * i + 2] );
00226 double err2 = fabs( trval - field[i] );
00227 if( err2 > err_max ) err_max = err2;
00228 }
00229
00230 double interpolateTime = MPI_Wtime();
00231 if( !proc_id ) std::cout << " interpolate points: " << interpolateTime - current << "\n";
00232 current = interpolateTime;
00233
00234 double gerr;
00235 MPI_Allreduce( &err_max, &gerr, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD );
00236 if( 0 == proc_id ) std::cout << "max err " << gerr << "\n";
00237
00238 delete mgen1;
00239 delete mgen2;
00240
00241 MPI_Finalize();
00242
00243 return 0;
00244 }