![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /*! \file HiReconstruction.hpp
00002 * This class implements a high order surface/curve reconstruction method which takes a
00003 * surface/curve mesh as input and compute local polynomial fittings (in monomial basis) around user
00004 * specified vertices. Little noise is allowed and least square will be used in such case. This
00005 * method assumes the underlying geometry of input mesh is smooth. The local fitting results could
00006 * be used for estimate the exact geometry of the surface. For instance, if mesh refinement is
00007 * perform on the input mesh, then the position of new vertices introduced by refinement could be
00008 * estimated by the local fitting, rather than using linear interpolation.
00009 * Implementations are based on the WALF method in paper:
00010 * Jiao, Xiangmin, and Duo Wang. "Reconstructing high-order surfaces for meshing." Engineering with
00011 * Computers 28.4 (2012): 361-373.
00012 */
00013
00014 #ifndef HI_RECONSTRUCTION_HPP
00015 #define HI_RECONSTRUCTION_HPP
00016
00017 #include "moab/Range.hpp"
00018 #include "moab/HalfFacetRep.hpp"
00019
00020 #ifdef MOAB_HAVE_MPI
00021 #include "moab/ParallelComm.hpp"
00022 #endif
00023
00024 #include
00025
00026 namespace moab
00027 {
00028 enum GEOMTYPE
00029 {
00030 HISURFACE,
00031 HI3DCURVE,
00032 HI2DCURVE
00033 };
00034
00035 class Core;
00036 class HalfFaceRep;
00037 class ParallelComm;
00038
00039 class HiReconstruction
00040 {
00041 public:
00042 HiReconstruction( Core* impl,
00043 ParallelComm* comm = 0,
00044 EntityHandle meshIn = 0,
00045 int minpnts = 5,
00046 bool recwhole = true );
00047
00048 ~HiReconstruction();
00049
00050 ErrorCode initialize( bool recwhole );
00051
00052 //! \brief Reconstruct a high order surface on given surface mesh
00053 /** Given a mesh, compute vertex based polynomial fittings for all vertices hosted by current
00054 * processor. The result will be stored interally for later usage of evalution. The inputs are:
00055 * a) degree, which is the order of polynomial used for vertex based fitting. b) interp, if it's
00056 * true, then interpolation will be applied for local fitting, otherwise it's least square
00057 * fitting. c) safeguard, specifies whether to use safeguarded numeric method. d) reset, if
00058 * fittings have been computed and stored in current object, then reset=true will recompute the
00059 * fittings based on user input and replace the existing one. \param degree Integer, order of
00060 * polynomials used for local fittings. \param interp Boolean, true=Interpolation, false=least
00061 * square fitting. \param safeguard Boolean, true=using safe guarded method in numerical
00062 * computing. \param reset Boolean, reset=true will recompute the fittings based on user input
00063 * and replace the existing one.
00064 */
00065 ErrorCode reconstruct3D_surf_geom( int degree, bool interp, bool safeguard, bool reset = false );
00066
00067 //! \brief Reconstruct a high order surface on given surface mesh
00068 /** Given a mesh, compute vertex based polynomial fittings for all vertices hosted by current
00069 * processor. User could specify various degrees for different vertices. It assumes that the
00070 * input degrees for vertices stored in the same order as that this class stores vertices: 1)
00071 * reconstruction will be only performed at vertices hosted by current processor, thus input
00072 * npts should match the number of hosted vertices. 2) all hosted vertices will be stored in a
00073 * MOAB::Range object, degrees for all these vertices should be stored in degrees as the same
00074 * order in the MOAB::Range object The result will be stored interally for later usage of
00075 * evalution. \param npts Integer size of array pointed by degrees, used for check \param
00076 * degrees Integer arrray, order of polynomials for local fitting at all hosted vertices \param
00077 * interp Boolean, true=Interpolation, false=least square fitting. \param safeguard Boolean,
00078 * true=using safe guarded method in numerical computing. \param reset Boolean, reset=true will
00079 * recompute the fittings based on user input and replace the existing one.
00080 */
00081 ErrorCode reconstruct3D_surf_geom( size_t npts, int* degrees, bool* interps, bool safeguard, bool reset = false );
00082
00083 //! \brief Reconstruct a high order curve on given curve mesh
00084 /** Given a curve mesh, compute vertex based polynomail fittings for all vertices hosted by
00085 * current processor. The vertex based fitting is done by perfoming three one-parameter fittings
00086 * along each axis, i.e. x,y,z. The result will be stored interally for later usage of
00087 * evalution. \param degree Integer, order of polynomials used for local fittings. \param interp
00088 * Boolean, true=Interpolation, false=least square fitting. \param safeguard Boolean, true=using
00089 * safe guarded method in numerical computing. \param reset Boolean, reset=true will recompute
00090 * the fittings based on user input and replace the existing one.
00091 */
00092 ErrorCode reconstruct3D_curve_geom( int degree, bool interp, bool safeguard, bool reset = false );
00093
00094 //! \brief Reconstruct a high order curve on given curve mesh
00095 /** Given a curve mesh, compute vertex based polynomail fittings for all vertices hosted by
00096 * current processor. The vertex based fitting is done by perfoming three one-parameter fittings
00097 * along each axis, i.e. x,y,z. User could specify various degrees for different vertices. It
00098 * assumes that the input degrees for vertices stored in the same order as that this class
00099 * stores vertices: 1) reconstruction will be only performed at vertices hosted by current
00100 * processor, thus input npts should match the number of hosted vertices. 2) all hosted vertices
00101 * will be stored in a MOAB::Range object, degrees for all these vertices should be stored in
00102 * degrees as the same order in the MOAB::Range object The result will be stored interally for
00103 * later usage of evalution. \param npts Integer size of array pointed by degrees, used for
00104 * check \param degrees Integer arrray, order of polynomials for local fitting at all hosted
00105 * vertices. \param interp Boolean, true=Interpolation, false=least square fitting. \param
00106 * safeguard Boolean, true=using safe guarded method in numerical computing. \param reset
00107 * Boolean, reset=true will recompute the fittings based on user input and replace the existing
00108 * one.
00109 */
00110 ErrorCode reconstruct3D_curve_geom( size_t npts, int* degrees, bool* interps, bool safeguard, bool reset = false );
00111
00112 //! \brief Construct vertex based polynomial fitting on a surface mesh
00113 /** Given a vertex on a surface mesh, construct a local fitting around this vertex. Stencils
00114 * around this vertex will be selected according to input degree and if data is noise. Local
00115 * uv-plane will be the estimated tangent plane at this vertex. minpnts will be used to specify
00116 * the minimum number allowed in the local stencil. The result will be returned to user by
00117 * preallocated memory coords, degree_out, coeffs. \param vid EntityHandle, the fitting will be
00118 * performed around this vertex for the local height function over the uv-plane. \param interp
00119 * Boolean, true=Interpolation, false=least square fitting. \param degree Integer, order of
00120 * polynomials used for local fittings. \param minpnts Integer, the allowed minimum number of
00121 * vertices in local stencil. If too small, the resulted fitting might be low order accurate. If
00122 * too large, it may introduce overfitting. \param safeguard Boolean, true=using safe guarded
00123 * method in numerical computing. \param coords Pointer to double, preallocated memory by user,
00124 * should have at least 9 doubles; stores the global coordinates of local coordinates system uvw
00125 * directions. \param degree_out Pointer to integer, used to store the degree of resulted
00126 * fitting \param coeffs, Pointer to double, preallocated memory for coefficients of local
00127 * fittings, should have at least (degree+2)(degree+1)/2 doubles.
00128 */
00129 ErrorCode polyfit3d_walf_surf_vertex( const EntityHandle vid,
00130 const bool interp,
00131 int degree,
00132 int minpnts,
00133 const bool safeguard,
00134 const int ncoords,
00135 double* coords,
00136 int* degree_out,
00137 const int ncoeffs,
00138 double* coeffs );
00139
00140 //! \brief Construct vertex based polynomial fitting on a curve mesh
00141 /** Given a vertex on a curve mesh, construct three one-parameter local fittings for each
00142 * coordinates axis around this vertex. Stencils around this vertex will be selected according
00143 * to input degree and if data is noise. Local u-line, or the single parameter will be the
00144 * estimated tangent line at this vertex. On each axis of xyz, a polynomial fitting will be
00145 * performed according to user input. minpnts will be used to specify the minimum number allowed
00146 * in the local stencil. The result will be returned to user by preallocated memory coords,
00147 * degree_out, coeffs. \param vid EntityHandle, the fittings will be performed around this
00148 * vertex. \param interp Boolean, true=Interpolation, false=least square fitting. \param degree
00149 * Integer, order of polynomials used for local fittings. \param minpnts Integer, the allowed
00150 * minimum number of vertices in local stencil. If too small, the resulted fitting might be low
00151 * order accurate. If too large, it may introduce overfitting. \param safeguard Boolean,
00152 * true=using safe guarded method in numerical computing. \param coords Pointer to double,
00153 * preallocated memory by user, should have at least 3 doubles; stores the global coordinates of
00154 * local coordinate system u direction. \param degree_out Pointer to integer, used to store the
00155 * degree of resulted fitting \param coeffs, Pointer to double, preallocated memory for
00156 * coefficients of local fittings, should have at least 3*(degree+1) doubles.
00157 */
00158 ErrorCode polyfit3d_walf_curve_vertex( const EntityHandle vid,
00159 const bool interp,
00160 int degree,
00161 int minpnts,
00162 const bool safeguard,
00163 const int ncoords,
00164 double* coords,
00165 int* degree_out,
00166 const int ncoeffs,
00167 double* coeffs );
00168
00169 //! \brief Perform high order projection of points in an element, using estimated geometry by
00170 //! reconstruction class
00171 /** Given an element on the input mesh, and new points in this element, represented as natural
00172 * coordinates in element, estimate their position in surface. This is done by weighted
00173 * averaging of local fittings: for each vertex of this elment, a fitting has been computed and
00174 * the new points could be projected by this fitting. The final result of projection is the
00175 * weighted average of these projections, weights are chosen as the barycentric coordinates of
00176 * the point in this element. The result will be returned to the user preallocated memory \param
00177 * elem EntityHandle, the element on which to perform high order projection. \param nvpe
00178 * Integer, number of nodes of this element, triangle is 3, quad is four. \param npts2fit
00179 * Integer, number of points lying in elem to be projected. \param naturalcoords2fit Pointer to
00180 * array of doubles, size=nvpe*npts2fit, natural coordinates in elem of points to be projected.
00181 * \param newcoords Pointer to array of doubles, preallocated by user, size=3*npts2fit,
00182 * estimated positions of input points.
00183 */
00184 ErrorCode hiproj_walf_in_element( EntityHandle elem,
00185 const int nvpe,
00186 const int npts2fit,
00187 const double* naturalcoords2fit,
00188 double* newcoords );
00189
00190 //! \brief Perform high order projection of points around a vertex, using estimated geometry by
00191 //! reconstruction class
00192 /** Given an vertex on the input mesh, and new points around this vertex, estimate their
00193 * position in surface. This is done by first projecting input points onto the local uv-plane
00194 * around this vertex and use the precomputed local fitting to estimate the ideal position of
00195 * input points. The result will be returned to the user preallocated memory \param vid
00196 * EntityHandle, the vertex around which to perform high order projection. \param npts2fit
00197 * Integer, number of points lying around vid to be fitted. \param coords2fit Pointer to array
00198 * of doubles, size=3*npts2fit, current coordinates of points to be projected. \param newcoords
00199 * Pointer to array of doubles, preallocated by user, size=3*npts2fit, estimated positions of
00200 * input points.
00201 */
00202 ErrorCode hiproj_walf_around_vertex( EntityHandle vid,
00203 const int npts2fit,
00204 const double* coords2fit,
00205 double* hiproj_new );
00206
00207 //! \brief Perform high order projection of points around a center vertex, assume geometry is
00208 //! surface
00209 /** Given a vertex position and the local fitting parameter around this vertex, estimate the
00210 * ideal position of input position according to the local fitting. This is done by first
00211 * projecting input points onto the local uv-plane around this vertex and use the given fitting
00212 * to estimate the ideal position of input points. The result will be returned to user
00213 * preallocated memory \param local_origin Pointer to 3 doubles, coordinates of the center
00214 * vertex \param local_coords Pointer to 9 doubles, global coordinates of directions of local
00215 * uvw coordinates axis at center vertex \param local_deg Integer, order of local polynomial
00216 * fitting \param local_coeffs Pointer to array of doubles, size=(local_deg+2)(local_deg+1)/2,
00217 * coefficients of local polynomial fittings, in monomial basis \param interp Boolean,
00218 * true=local fitting is interpolation, false=local fitting is least square fitting \param
00219 * npts2fit Integer, number of points to be estimated, around the center vertices \param
00220 * coords2fit Pointer to array of doubles, size=3*npts2fit, current coordinates of points to be
00221 * estimated \param hiproj_new Pointer to array of doubles, size=3*npts2fit, memory preallocated
00222 * by user to store the fitting/estimated positions of input points.
00223 */
00224 void walf3d_surf_vertex_eval( const double* local_origin,
00225 const double* local_coords,
00226 const int local_deg,
00227 const double* local_coeffs,
00228 const bool interp,
00229 const int npts2fit,
00230 const double* coords2fit,
00231 double* hiproj_new );
00232
00233 //! \brief Perform high order projection of points around a center vertex, assume geometry is
00234 //! curve
00235 /** Given a vertex position and the local one-parameter fittings parameter around this vertex,
00236 * estimate the ideal position of input position according to the local fittings. This is done
00237 * by first projecting input points onto the local u-direction at this vertex and then use the
00238 * value u as parameter for the three fittings, one for each coordinates axis of xyz. The result
00239 * will be returned to user preallocated memory \param local_origin Pointer to 3 doubles,
00240 * coordinates of the center vertex \param local_coords Pointer to 3 doubles, global coordinates
00241 * of direction of local u coordinate axis at center vertex \param local_deg Integer, order of
00242 * local polynomial fitting \param local_coeffs Pointer to array of doubles,
00243 * size=3*(local_deg+1), coefficients of three local polynomial fittings, in monomial basis. For
00244 * each fitting, local_deg+1 parameters. \param interp Boolean, true=local fitting is
00245 * interpolation, false=local fitting is least square fitting \param npts2fit Integer, number of
00246 * points to be estimated, around the center vertices \param coords2fit Pointer to array of
00247 * doubles, size=3*npts2fit, current coordinates of points to be estimated \param hiproj_new
00248 * Pointer to array of doubles, size=3*npts2fit, memory preallocated by user to store the
00249 * fitting/estimated positions of input points.
00250 */
00251 void walf3d_curve_vertex_eval( const double* local_origin,
00252 const double* local_coords,
00253 const int local_deg,
00254 const double* local_coeffs,
00255 const bool interp,
00256 const int npts2fit,
00257 const double* coords2fit,
00258 double* hiproj_new );
00259
00260 //! \brief Get interally stored fitting results
00261 /** Get fittings results of a vertex, stored internally, results will be writtend to user
00262 * provided memory \param vid EntityHandle, a vertex in _verts2rec \param geomtype GEOMTYPE, one
00263 * of HISURFACE,HI3DCURVE,HI2DCURVE \param coords vector, global coordinates of local uvw
00264 * coordinate system axis directions will be appended to the end of coords \param degree_out
00265 * Reference to Integer, order of polynomial fittings for vid \param coeffs vector, coefficients
00266 * of local polynomial fittings in monomial basis will be appended to the end of coeffs \param
00267 * interp Reference to Boolean, true = interpolation
00268 */
00269 bool get_fittings_data( EntityHandle vid,
00270 GEOMTYPE& geomtype,
00271 std::vector< double >& coords,
00272 int& degree_out,
00273 std::vector< double >& coeffs,
00274 bool& interp );
00275
00276 // Helper function: estimate require number of ghost layers in parallel setting
00277 static int estimate_num_ghost_layers( int degree, bool interp = false )
00278 {
00279 return 1 + ( interp ? ( ( degree + 1 ) >> 1 ) + ( ( degree + 1 ) & 1 )
00280 : ( ( degree + 2 ) >> 1 ) + ( ( degree + 2 ) & 1 ) );
00281 };
00282
00283 protected:
00284 Core* mbImpl;
00285 ParallelComm* pcomm;
00286 HalfFacetRep* ahf;
00287 // prevent copying
00288 HiReconstruction( const HiReconstruction& source );
00289 HiReconstruction& operator=( const HiReconstruction& right );
00290
00291 // mesh on which to perform reconstruction
00292 EntityHandle _mesh2rec;
00293 //_verts2rec all locally hosted vertices, in parallel might be different from _invert which is
00294 // all the vertices in _mesh2rec, including ghost vertices
00295 Range _verts2rec, _inverts, _inedges, _infaces, _incells;
00296 size_t _nv2rec; // size of _verts2rec
00297
00298 int _MAXPNTS, _MINPNTS;
00299 double _MINEPS;
00300
00301 // in curve mesh, _hasderiv=true means vertex tangent vectors have been computed over _verts2rec
00302 // in surface mesh, _hasderiv=true means vertex normals have been computed over _verts2rec
00303 bool _hasderiv;
00304
00305 GEOMTYPE _geom;
00306 int _dim;
00307 bool _hasfittings;
00308 bool _initfittings;
00309 std::vector< double > _local_coords;
00310 std::vector< double > _local_fit_coeffs;
00311 std::vector< size_t > _vertID2coeffID;
00312 std::vector< int > _degrees_out;
00313 std::vector< bool > _interps;
00314
00315 // Estimate stencil size
00316 int estimate_num_rings( int degree, bool interp );
00317
00318 //! \brief Given a vertex, return the incident elements with dimension elemdim
00319 /** Wrapper of MOAB Core->get_adjacencies and HalfRep->get_up_adjacencies, depends on if USE_AHF
00320 * is defined \param vid EntityHandle of vertex \param elemdim Integer, dimension of elements
00321 * incidented in vid \param adjents vector, container which push incident elements
00322 * in
00323 */
00324 ErrorCode vertex_get_incident_elements( const EntityHandle& vid,
00325 const int elemdim,
00326 std::vector< EntityHandle >& adjents );
00327
00328 //! \brief Get n-ring neighbor vertices, assuming curve/surface mesh, not volume mesh
00329 /** Given a vertex, find its n-ring neighbor vertices including itself in _mesrh2rec.
00330 * 1-ring neighbor vertices of a vertex are the vertices connected with this vertex with an edge
00331 * n-ring vertices are obtained first get the 1-ring vertices and then get the 1-ring of these
00332 * vertices, and so on \param vid EntityHandle, vertex around which to get n-ring vertices
00333 * \param ring Integer, number of rings
00334 * \param minpnts Integer, number of minimum vertices to obtain, if the input ring could not
00335 * provide enough vertices, i.e. more than minpnts, then expand the number of rings \param ngbvs
00336 * Range, the n-ring vertices of vid, including vid. If too many points found, i.e. more than
00337 * _MAXPNTS, then terminate early.
00338 */
00339 ErrorCode obtain_nring_ngbvs( const EntityHandle vid, int ring, const int minpnts, Range& ngbvs );
00340
00341 /** Initialize the storage for fitting results over _mesh2rec, curve/surface mesh
00342 * Two options are provided: a) use uniform degree for all vertices b) use customized degrees
00343 * for different vertices After calling of initializing functions, _initfitting is set to be
00344 * true, the fitting result could be stored internally
00345 */
00346 void initialize_surf_geom( const int degree );
00347 void initialize_surf_geom( const size_t npts, const int* degrees );
00348 void initialize_3Dcurve_geom( const int degree );
00349 void initialize_3Dcurve_geom( const size_t npts, const int* degrees );
00350
00351 /** Save fitting results of a vertex into internal storage
00352 * \param vid EntityHandle, a vertex in _mesh2rec, in _verts2rec
00353 * \param coords Pointer to double array, global coordinates of local uvw coordinate system axis
00354 * directions \param degree_out Integer, order of polynomial fittings for vid \param coeffs
00355 * Pointer to double array, coefficients of local polynomial fittings in monomial basis \param
00356 * interp Boolean, true = interpolation
00357 */
00358 // ErrorCode set_geom_data_surf(const EntityHandle vid, const double* coords, const double
00359 // degree_out, const double* coeffs, bool interp); ErrorCode set_geom_data_3Dcurve(const
00360 // EntityHandle vid, const double* coords, const double degree_out, const double* coeffs, bool
00361 // interp);
00362
00363 /** Compute area weighted average vertex normals for given vertex, assuming surface mesh
00364 * For arbitrary polygon mesh, use incident two edges of each incident polygon of this vertex to
00365 * form a triangle, then use these incident "triangles" to compute area weighted average vertex
00366 * normals \param vid EntityHandle, vertex in _mesh2rec, might be ghost vertex \param nrm
00367 * Pointer to 3-doubles array, preallocated by user
00368 */
00369 ErrorCode average_vertex_normal( const EntityHandle vid, double* nrm );
00370
00371 /** Compute weighted average vertex normals for all vertices in _verts2rec, not including ghost
00372 * vertices, results are stored interally in _local_coords
00373 */
00374 ErrorCode compute_average_vertex_normals_surf();
00375
00376 /** Return the normals of given vertices in a Range, writing to preallocated memory
00377 * If normals have been computed and stored, just access them
00378 * If not, compute on the fly
00379 * \param vertsh Range, EntityHandles of vertices
00380 * \param nrms Pointer of array of doubles, size = 3*vertsh.size()
00381 */
00382 ErrorCode get_normals_surf( const Range& vertsh, double* nrms );
00383
00384 /** Compute area weighted average vertex tangent vector for given vertex, assuming curve mesh
00385 * Use incident two edges of vertex as estimatation of tangent vectors, weighted by length
00386 * \param vid EntityHandle, vertex in _mesh2rec, might be ghost vertex
00387 * \param tang Pointer to 3-doubles array, preallocated by user
00388 */
00389 ErrorCode average_vertex_tangent( const EntityHandle vid, double* tang );
00390
00391 /** Compute weighted average vertex tangent vectors for all vertices in _verts2rec, not
00392 * including ghost vertices, results are stored interally in _local_coords
00393 */
00394 ErrorCode compute_average_vertex_tangents_curve();
00395
00396 /** Return the tangent vectors of given vertices in a Range, writing to preallocated memory
00397 * If tangent vectors have been computed and stored, just access them
00398 * If not, compute on the fly
00399 * \param vertsh Range, EntityHandles of vertices
00400 * \param tangs Pointer of array of doubles, size = 3*vertsh.size()
00401 */
00402 ErrorCode get_tangents_curve( const Range& vertsh, double* tangs );
00403
00404 //! \brief Compute local coordinates system of a vertex, and perform vertex based polynomial
00405 //! fittings of local height function
00406 /** This function take the first vertex of input as center, and build local uv-plane by
00407 * estimating vertex normals and tangent planes Then other vertices forms vectors starting from
00408 * center and then are projectd onto this uv-plane to form a local height function. Local
00409 * fitting of this local height function is performed in WLS sense, according if interpolation
00410 * required or not. \param nverts Integer, number of vertices of input \param ngbcors Pointer to
00411 * array of doubles, size = 3*nverts, coordinates of input vertices, first will be center \param
00412 * ngbnrms Pointer to array of doubles, size = 3*nverts, vertex normals of input vertices \param
00413 * degree Integer, user specified fitting degree \param interp Boolean, user input,
00414 * interpolation or not \param safeguard Boolean, true = use safeguarded numerical method in
00415 * computing \param ncoords Integer, size of *coords, should be 9, used for check \param coords
00416 * Pointer to array of doubles, preallocated memory for storing the glocal coordinates of local
00417 * uvw axis directions \param ncoeffs Integer, size of *coeffs, should be
00418 * (degree+2)(degree+1)/2, used for check \param coeffs Pointer to array of doubles,
00419 * preallocated memory for storing coefficients of local fittings in monomial basis \param
00420 * degree_out Pointer to integer, order of resulted polynomial of fitting, could be downgraded
00421 * due to numerical issues \param degree_pnt Pointer to integer, polynomial fitting order
00422 * determined by stencil size/number of points \param degree_qr Pointer to integer, polynomial
00423 * fitting order determined by Vandermonde system condition number
00424 */
00425 void polyfit3d_surf_get_coeff( const int nverts,
00426 const double* ngbcors,
00427 const double* ngbnrms,
00428 int degree,
00429 const bool interp,
00430 const bool safeguard,
00431 const int ncoords,
00432 double* coords,
00433 const int ncoeffs,
00434 double* coeffs,
00435 int* degree_out,
00436 int* degree_pnt,
00437 int* degree_qr );
00438 //! \brief Form and solve Vandermonde system of bi-variables
00439 void eval_vander_bivar_cmf( const int npts2fit,
00440 const double* us,
00441 const int ndim,
00442 double* bs,
00443 int degree,
00444 const double* ws,
00445 const bool interp,
00446 const bool safeguard,
00447 int* degree_out,
00448 int* degree_pnt,
00449 int* degree_qr );
00450
00451 //! \brief Compute local single variable coordinate system of a vertex, and perform vertex based
00452 //! polynomial fittings of three global coordinates axis
00453 /** This function take the first vertex of input as center, and build local u-line by estimating
00454 * tangent vector Then other vertices form vectors originating from center and vectors then are
00455 * projectd onto this u-plane to form three local height functions, one for each coordinates
00456 * axis. Local fitting of these local height functions are performed in WLS sense, according if
00457 * interpolation required or not. \param nverts Integer, number of vertices of input \param
00458 * ngbcors Pointer to array of doubles, size = 3*nverts, coordinates of input vertices, first
00459 * will be center \param ngbtangs Pointer to array of doubles, size = 3*nverts, vertex tangent
00460 * vectors of input vertices \param degree Integer, user specified fitting degree \param interp
00461 * Boolean, user input, interpolation or not \param safeguard Boolean, true = use safeguarded
00462 * numerical method in computing \param ncoords Integer, size of *coords, should be 3, used for
00463 * check \param coords Pointer to array of doubles, preallocated memory for storing the glocal
00464 * coordinates of local u axis direction \param ncoeffs Integer, size of *coeffs, should be
00465 * 3*(degree+1), used for check \param coeffs Pointer to array of doubles, preallocated memory
00466 * for storing coefficients of local fittings in monomial basis \param degree_out Pointer to
00467 * integer, order of resulted polynomial of fitting, could be downgraded due to numerical issues
00468 */
00469 void polyfit3d_curve_get_coeff( const int nverts,
00470 const double* ngbcors,
00471 const double* ngbtangs,
00472 int degree,
00473 const bool interp,
00474 const bool safeguard,
00475 const int ncoords,
00476 double* coords,
00477 const int ncoeffs,
00478 double* coeffs,
00479 int* degree_out );
00480 //! \brief Form and solve Vandermonde system of single-variables
00481 void eval_vander_univar_cmf( const int npts2fit,
00482 const double* us,
00483 const int ndim,
00484 double* bs,
00485 int degree,
00486 const double* ws,
00487 const bool interp,
00488 const bool safeguard,
00489 int* degree_out );
00490 //! \brief Compute weights for points selected in weighted least square fittigns
00491 int compute_weights( const int nrows,
00492 const int ncols,
00493 const double* us,
00494 const int nngbs,
00495 const double* ngbnrms,
00496 const int degree,
00497 const double toler,
00498 double* ws );
00499 //! \brief Check the correctness of barycentric coordination, wi>=0 and sum(wi)=1
00500 bool check_barycentric_coords( const int nws, const double* naturalcoords );
00501 }; // class HiReconstruction
00502 } // namespace moab
00503 #endif