![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /*
00002 * IntxUtils.hpp
00003 *
00004 * Created on: Oct 3, 2012
00005 */
00006
00007 #ifndef INTXUTILS_HPP_
00008 #define INTXUTILS_HPP_
00009
00010 #include "moab/CartVect.hpp"
00011 #include "moab/Core.hpp"
00012
00013 namespace moab
00014 {
00015
00016 class IntxUtils
00017 {
00018 public:
00019 // vec utilities that could be common between quads on a plane or sphere
00020 static inline double dist2( double* a, double* b )
00021 {
00022 double abx = b[0] - a[0], aby = b[1] - a[1];
00023 return sqrt( abx * abx + aby * aby );
00024 }
00025
00026 static inline double area2D( double* a, double* b, double* c )
00027 {
00028 // (b-a)x(c-a) / 2
00029 return ( ( b[0] - a[0] ) * ( c[1] - a[1] ) - ( b[1] - a[1] ) * ( c[0] - a[0] ) ) / 2;
00030 }
00031
00032 static int borderPointsOfXinY2( double* X, int nX, double* Y, int nY, double* P, int* side, double epsilon_area );
00033
00034 static int SortAndRemoveDoubles2( double* P, int& nP, double epsilon );
00035 // the marks will show what edges of blue intersect the red
00036
00037 static ErrorCode EdgeIntersections2( double* blue,
00038 int nsBlue,
00039 double* red,
00040 int nsRed,
00041 int* markb,
00042 int* markr,
00043 double* points,
00044 int& nPoints );
00045
00046 // special one, for intersection between rll (constant latitude) and cs quads
00047 static ErrorCode EdgeIntxRllCs( double* blue,
00048 CartVect* bluec,
00049 int* blueEdgeType,
00050 int nsBlue,
00051 double* red,
00052 CartVect* redc,
00053 int nsRed,
00054 int* markb,
00055 int* markr,
00056 int plane,
00057 double Radius,
00058 double* points,
00059 int& nPoints );
00060
00061 // vec utils related to gnomonic projection on a sphere
00062 // vec utils
00063 /*
00064 *
00065 * position on a sphere of radius R
00066 * if plane specified, use it; if not, return the plane, and the point in the plane
00067 * there are 6 planes, numbered 1 to 6
00068 * plane 1: x=R, plane 2: y=R, 3: x=-R, 4: y=-R, 5: z=-R, 6: z=R
00069 *
00070 * projection on the plane will preserve the orientation, such that a triangle, quad pointing
00071 * outside the sphere will have a positive orientation in the projection plane
00072 * this is similar logic to
00073 * /cesm1_0_4/models/atm/cam/src/dynamics/homme/share/coordinate_systems_mod.F90 method:
00074 * function cart2face(cart3D) result(face_no)
00075 */
00076 static void decide_gnomonic_plane( const CartVect& pos, int& oPlane );
00077
00078 // point on a sphere is projected on one of six planes, decided earlier
00079
00080 static ErrorCode gnomonic_projection( const CartVect& pos, double R, int plane, double& c1, double& c2 );
00081
00082 // given the position on plane (one out of 6), find out the position on sphere
00083 static ErrorCode reverse_gnomonic_projection( const double& c1,
00084 const double& c2,
00085 double R,
00086 int plane,
00087 CartVect& pos );
00088
00089 // given a mesh on the sphere, project all centers in 6 gnomonic planes, or project mesh too
00090 static void gnomonic_unroll( double& c1, double& c2, double R, int plane );
00091
00092 // given a mesh on the sphere, project all centers in 6 gnomonic planes, or project mesh too
00093 static ErrorCode global_gnomonic_projection( Interface* mb,
00094 EntityHandle inSet,
00095 double R,
00096 bool centers_only,
00097 EntityHandle& outSet );
00098
00099 static void transform_coordinates( double* avg_position, int projection_type );
00100 /*
00101 * other methods to convert from spherical coord to cartesian, and back
00102 * A spherical coordinate triple is (R, lon, lat)
00103 * should we store it as a CartVect? probably not ...
00104 * /cesm1_0_4/models/atm/cam/src/dynamics/homme/share/coordinate_systems_mod.F90
00105 *
00106 enforce three facts:
00107 ! ==========================================================
00108 ! enforce three facts:
00109 !
00110 ! 1) lon at poles is defined to be zero
00111 !
00112 ! 2) Grid points must be separated by about .01 Meter (on earth)
00113 ! from pole to be considered "not the pole".
00114 !
00115 ! 3) range of lon is { 0<= lon < 2*pi }
00116 !
00117 ! 4) range of lat is from -pi/2 to pi/2; -pi/2 or pi/2 are the poles, so there the lon is 0
00118 !
00119 ! ==========================================================
00120 */
00121 struct SphereCoords
00122 {
00123 double R, lon, lat;
00124 };
00125
00126 static SphereCoords cart_to_spherical( CartVect& );
00127
00128 static CartVect spherical_to_cart( SphereCoords& );
00129
00130 /*
00131 * create a mesh used mainly for visualization for now, with nodes corresponding to
00132 * GL points, a so-called refined mesh, with NP nodes in each direction.
00133 * input: a range of quads (coarse), and a desired order (NP is the number of points), so it
00134 * is order + 1
00135 *
00136 * output: a set with refined elements; with proper input, it should be pretty
00137 * similar to a Homme mesh read with ReadNC
00138 */
00139 // ErrorCode SpectralVisuMesh(Interface * mb, Range & input, int NP, EntityHandle & outputSet,
00140 // double tolerance);
00141
00142 /*
00143 * given an entity set, get all nodes and project them on a sphere with given radius
00144 */
00145 static ErrorCode ScaleToRadius( Interface* mb, EntityHandle set, double R );
00146
00147 static double distance_on_great_circle( CartVect& p1, CartVect& p2 );
00148
00149 // break the nonconvex quads into triangles; remove the quad from the set? yes.
00150 // maybe radius is not needed;
00151 //
00152 static ErrorCode enforce_convexity( Interface* mb, EntityHandle set, int rank = 0 );
00153
00154 // this could be larger than PI, because of orientation; useful for non-convex polygons
00155 static double oriented_spherical_angle( double* A, double* B, double* C );
00156
00157 // looking at quad connectivity, collapse to triangle if 2 nodes equal
00158 // then delete the old quad
00159 static ErrorCode fix_degenerate_quads( Interface* mb, EntityHandle set );
00160
00161 // distance along a great circle on a sphere of radius 1
00162 static double distance_on_sphere( double la1, double te1, double la2, double te2 );
00163
00164 /* End Analytical functions */
00165
00166 /*
00167 * given 2 arcs AB and CD, compute the unique intersection point, if it exists
00168 * in between
00169 */
00170 static ErrorCode intersect_great_circle_arcs( double* A, double* B, double* C, double* D, double R, double* E );
00171 /*
00172 * given 2 arcs AB and CD, compute the intersection points, if it exists
00173 * AB is a great circle arc
00174 * CD is a constant latitude arc
00175 */
00176 static ErrorCode intersect_great_circle_arc_with_clat_arc( double* A,
00177 double* B,
00178 double* C,
00179 double* D,
00180 double R,
00181 double* E,
00182 int& np );
00183
00184 // ErrorCode set_edge_type_flag(Interface * mb, EntityHandle sf1);
00185
00186 static int borderPointsOfCSinRLL( CartVect* redc,
00187 double* red2dc,
00188 int nsRed,
00189 CartVect* bluec,
00190 int nsBlue,
00191 int* blueEdgeType,
00192 double* P,
00193 int* side,
00194 double epsil );
00195
00196 // used only by homme
00197 static ErrorCode deep_copy_set_with_quads( Interface* mb, EntityHandle source_set, EntityHandle dest_set );
00198
00199 // used to 'repair' scrip-like meshes
00200 static ErrorCode remove_duplicate_vertices( Interface* mb,
00201 EntityHandle file_set,
00202 double merge_tol,
00203 std::vector< Tag >& tagList );
00204
00205 static ErrorCode remove_padded_vertices( Interface* mb, EntityHandle file_set, std::vector< Tag >& tagList );
00206 };
00207
00208 class IntxAreaUtils
00209 {
00210 public:
00211 enum AreaMethod
00212 {
00213 lHuiller = 0,
00214 Girard = 1,
00215 GaussQuadrature = 2
00216 };
00217
00218 IntxAreaUtils( AreaMethod p_eAreaMethod = lHuiller ) : m_eAreaMethod( p_eAreaMethod ) {}
00219
00220 ~IntxAreaUtils() {}
00221
00222 /*
00223 * utilities to compute area of a polygon on which all edges are arcs of great circles on a
00224 * sphere
00225 */
00226 /*
00227 * this will compute the spherical angle ABC, when A, B, C are on a sphere of radius R
00228 * the radius will not be needed, usually, just for verification the points are indeed on that
00229 * sphere the center of the sphere is at origin (0,0,0) this angle can be used in Girard's
00230 * theorem to compute the area of a spherical polygon
00231 */
00232 double spherical_angle( double* A, double* B, double* C, double Radius );
00233
00234 double area_spherical_triangle( double* A, double* B, double* C, double Radius, int rank = 0 );
00235
00236 double area_spherical_polygon( double* A, int N, double Radius, int* sign = NULL, int rank = 0 );
00237
00238 double area_spherical_element( Interface* mb, EntityHandle elem, double R, int rank = 0 );
00239
00240 double area_on_sphere( Interface* mb, EntityHandle set, double R, int rank = 0 );
00241
00242 ErrorCode positive_orientation( Interface* mb, EntityHandle set, double R, int rank = 0 );
00243
00244 private:
00245 /* lHuiller method for computing area on a spherical triangle */
00246 double area_spherical_triangle_lHuiller( double* ptA, double* ptB, double* ptC, double Radius, int rank = 0 );
00247
00248 /* lHuiller method for computing area on a spherical polygon */
00249 double area_spherical_polygon_lHuiller( double* A, int N, double Radius, int* sign = NULL, int rank = 0 );
00250
00251 /* Girard method for computing area on a spherical triangle with spherical excess */
00252 double area_spherical_triangle_girard( double* A, double* B, double* C, double Radius );
00253
00254 /* Girard method for computing area on a spherical polygon with spherical excess */
00255 double area_spherical_polygon_girard( double* A, int N, double Radius );
00256
00257 #ifdef MOAB_HAVE_TEMPESTREMAP
00258 /* Gauss-quadrature based integration method for computing area on a spherical triangle */
00259 double area_spherical_triangle_GQ( double* ptA, double* ptB, double* ptC, double Radius );
00260
00261 /* Gauss-quadrature based integration method for computing area on a spherical polygon element
00262 */
00263 double area_spherical_polygon_GQ( double* A, int N, double Radius );
00264 #endif
00265
00266 private:
00267 /* data */
00268 AreaMethod m_eAreaMethod;
00269 };
00270
00271 } // namespace moab
00272 #endif /* INTXUTILS_HPP_ */