![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #include "moab/LocalDiscretization/LinearHex.hpp"
00002 #include "moab/Matrix3.hpp"
00003 #include "moab/Forward.hpp"
00004 #include
00005 #include
00006
00007 namespace moab
00008 {
00009
00010 const double LinearHex::corner[8][3] = { { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 }, { -1, 1, -1 },
00011 { -1, -1, 1 }, { 1, -1, 1 }, { 1, 1, 1 }, { -1, 1, 1 } };
00012
00013 /* For each point, its weight and location are stored as an array.
00014 Hence, the inner dimension is 2, the outer dimension is gauss_count.
00015 We use a one-point Gaussian quadrature, since it integrates linear functions exactly.
00016 */
00017 const double LinearHex::gauss[1][2] = { { 2.0, 0.0 } };
00018
00019 ErrorCode LinearHex::jacobianFcn( const double* params,
00020 const double* verts,
00021 const int /*nverts*/,
00022 const int ndim,
00023 double*,
00024 double* result )
00025 {
00026 assert( params && verts );
00027 Matrix3* J = reinterpret_cast< Matrix3* >( result );
00028 *J = Matrix3( 0.0 );
00029 for( unsigned i = 0; i < 8; ++i )
00030 {
00031 const double params_p = 1 + params[0] * corner[i][0];
00032 const double eta_p = 1 + params[1] * corner[i][1];
00033 const double zeta_p = 1 + params[2] * corner[i][2];
00034 const double dNi_dparams = corner[i][0] * eta_p * zeta_p;
00035 const double dNi_deta = corner[i][1] * params_p * zeta_p;
00036 const double dNi_dzeta = corner[i][2] * params_p * eta_p;
00037 ( *J )( 0, 0 ) += dNi_dparams * verts[i * ndim + 0];
00038 ( *J )( 1, 0 ) += dNi_dparams * verts[i * ndim + 1];
00039 ( *J )( 2, 0 ) += dNi_dparams * verts[i * ndim + 2];
00040 ( *J )( 0, 1 ) += dNi_deta * verts[i * ndim + 0];
00041 ( *J )( 1, 1 ) += dNi_deta * verts[i * ndim + 1];
00042 ( *J )( 2, 1 ) += dNi_deta * verts[i * ndim + 2];
00043 ( *J )( 0, 2 ) += dNi_dzeta * verts[i * ndim + 0];
00044 ( *J )( 1, 2 ) += dNi_dzeta * verts[i * ndim + 1];
00045 ( *J )( 2, 2 ) += dNi_dzeta * verts[i * ndim + 2];
00046 }
00047 ( *J ) *= 0.125;
00048 return MB_SUCCESS;
00049 } // LinearHex::jacobian()
00050
00051 ErrorCode LinearHex::evalFcn( const double* params,
00052 const double* field,
00053 const int /*ndim*/,
00054 const int num_tuples,
00055 double*,
00056 double* result )
00057 {
00058 assert( params && field && num_tuples != -1 );
00059 for( int i = 0; i < num_tuples; i++ )
00060 result[i] = 0.0;
00061 for( unsigned i = 0; i < 8; ++i )
00062 {
00063 const double N_i =
00064 ( 1 + params[0] * corner[i][0] ) * ( 1 + params[1] * corner[i][1] ) * ( 1 + params[2] * corner[i][2] );
00065 for( int j = 0; j < num_tuples; j++ )
00066 result[j] += N_i * field[i * num_tuples + j];
00067 }
00068 for( int i = 0; i < num_tuples; i++ )
00069 result[i] *= 0.125;
00070
00071 return MB_SUCCESS;
00072 }
00073
00074 ErrorCode LinearHex::integrateFcn( const double* field,
00075 const double* verts,
00076 const int nverts,
00077 const int ndim,
00078 const int num_tuples,
00079 double* work,
00080 double* result )
00081 {
00082 assert( field && verts && num_tuples != -1 );
00083 double tmp_result[8];
00084 ErrorCode rval = MB_SUCCESS;
00085 for( int i = 0; i < num_tuples; i++ )
00086 result[i] = 0.0;
00087 CartVect x;
00088 Matrix3 J;
00089 for( unsigned int j1 = 0; j1 < LinearHex::gauss_count; ++j1 )
00090 {
00091 x[0] = LinearHex::gauss[j1][1];
00092 double w1 = LinearHex::gauss[j1][0];
00093 for( unsigned int j2 = 0; j2 < LinearHex::gauss_count; ++j2 )
00094 {
00095 x[1] = LinearHex::gauss[j2][1];
00096 double w2 = LinearHex::gauss[j2][0];
00097 for( unsigned int j3 = 0; j3 < LinearHex::gauss_count; ++j3 )
00098 {
00099 x[2] = LinearHex::gauss[j3][1];
00100 double w3 = LinearHex::gauss[j3][0];
00101 rval = evalFcn( x.array(), field, ndim, num_tuples, NULL, tmp_result );
00102 if( MB_SUCCESS != rval ) return rval;
00103 rval = jacobianFcn( x.array(), verts, nverts, ndim, work, J[0] );
00104 if( MB_SUCCESS != rval ) return rval;
00105 double tmp_det = w1 * w2 * w3 * J.determinant();
00106 for( int i = 0; i < num_tuples; i++ )
00107 result[i] += tmp_result[i] * tmp_det;
00108 }
00109 }
00110 }
00111
00112 return MB_SUCCESS;
00113 } // LinearHex::integrate_vector()
00114
00115 ErrorCode LinearHex::reverseEvalFcn( EvalFcn eval,
00116 JacobianFcn jacob,
00117 InsideFcn ins,
00118 const double* posn,
00119 const double* verts,
00120 const int nverts,
00121 const int ndim,
00122 const double iter_tol,
00123 const double inside_tol,
00124 double* work,
00125 double* params,
00126 int* is_inside )
00127 {
00128 assert( posn && verts );
00129 return EvalSet::evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
00130 is_inside );
00131 }
00132
00133 int LinearHex::insideFcn( const double* params, const int ndim, const double tol )
00134 {
00135 return EvalSet::inside_function( params, ndim, tol );
00136 }
00137
00138 ErrorCode LinearHex::normalFcn( const int ientDim,
00139 const int facet,
00140 const int nverts,
00141 const double* verts,
00142 double normal[3] )
00143 {
00144 // assert(facet < 6 && ientDim == 2 && nverts == 8);
00145 if( nverts != 8 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed hex :: expected value = 8 " );
00146 if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " );
00147 if( facet > 6 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-5" );
00148
00149 int id0 = CN::mConnectivityMap[MBHEX][ientDim - 1].conn[facet][0];
00150 int id1 = CN::mConnectivityMap[MBHEX][ientDim - 1].conn[facet][1];
00151 int id2 = CN::mConnectivityMap[MBHEX][ientDim - 1].conn[facet][3];
00152
00153 double x0[3], x1[3];
00154
00155 for( int i = 0; i < 3; i++ )
00156 {
00157 x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
00158 x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i];
00159 }
00160
00161 double a = x0[1] * x1[2] - x1[1] * x0[2];
00162 double b = x1[0] * x0[2] - x0[0] * x1[2];
00163 double c = x0[0] * x1[1] - x1[0] * x0[1];
00164 double nrm = sqrt( a * a + b * b + c * c );
00165
00166 if( nrm > std::numeric_limits< double >::epsilon() )
00167 {
00168 normal[0] = a / nrm;
00169 normal[1] = b / nrm;
00170 normal[2] = c / nrm;
00171 }
00172 return MB_SUCCESS;
00173 }
00174
00175 } // namespace moab