![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #include "moab/LocalDiscretization/LinearQuad.hpp"
00002 #include "moab/Matrix3.hpp"
00003 #include "moab/Forward.hpp"
00004 #include
00005 #include
00006
00007 namespace moab
00008 {
00009
00010 const double LinearQuad::corner[4][2] = { { -1, -1 }, { 1, -1 }, { 1, 1 }, { -1, 1 } };
00011
00012 /* For each point, its weight and location are stored as an array.
00013 Hence, the inner dimension is 2, the outer dimension is gauss_count.
00014 We use a one-point Gaussian quadrature, since it integrates linear functions exactly.
00015 */
00016 const double LinearQuad::gauss[1][2] = { { 2.0, 0.0 } };
00017
00018 ErrorCode LinearQuad::jacobianFcn( const double* params,
00019 const double* verts,
00020 const int /*nverts*/,
00021 const int /*ndim*/,
00022 double*,
00023 double* result )
00024 {
00025 Matrix3* J = reinterpret_cast< Matrix3* >( result );
00026 *J = Matrix3( 0.0 );
00027 for( unsigned i = 0; i < 4; ++i )
00028 {
00029 const double xi_p = 1 + params[0] * corner[i][0];
00030 const double eta_p = 1 + params[1] * corner[i][1];
00031 const double dNi_dxi = corner[i][0] * eta_p;
00032 const double dNi_deta = corner[i][1] * xi_p;
00033 ( *J )( 0, 0 ) += dNi_dxi * verts[i * 3 + 0];
00034 ( *J )( 1, 0 ) += dNi_dxi * verts[i * 3 + 1];
00035 ( *J )( 0, 1 ) += dNi_deta * verts[i * 3 + 0];
00036 ( *J )( 1, 1 ) += dNi_deta * verts[i * 3 + 1];
00037 }
00038 ( *J ) *= 0.25;
00039 ( *J )( 2, 2 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */
00040 return MB_SUCCESS;
00041 } // LinearQuad::jacobian()
00042
00043 ErrorCode LinearQuad::evalFcn( const double* params,
00044 const double* field,
00045 const int /*ndim*/,
00046 const int num_tuples,
00047 double*,
00048 double* result )
00049 {
00050 for( int i = 0; i < num_tuples; i++ )
00051 result[i] = 0.0;
00052 for( unsigned i = 0; i < 4; ++i )
00053 {
00054 const double N_i = ( 1 + params[0] * corner[i][0] ) * ( 1 + params[1] * corner[i][1] );
00055 for( int j = 0; j < num_tuples; j++ )
00056 result[j] += N_i * field[i * num_tuples + j];
00057 }
00058 for( int i = 0; i < num_tuples; i++ )
00059 result[i] *= 0.25;
00060
00061 return MB_SUCCESS;
00062 }
00063
00064 ErrorCode LinearQuad::integrateFcn( const double* field,
00065 const double* verts,
00066 const int nverts,
00067 const int ndim,
00068 const int num_tuples,
00069 double* work,
00070 double* result )
00071 {
00072 double tmp_result[4];
00073 ErrorCode rval = MB_SUCCESS;
00074 for( int i = 0; i < num_tuples; i++ )
00075 result[i] = 0.0;
00076 CartVect x;
00077 Matrix3 J;
00078 for( unsigned int j1 = 0; j1 < LinearQuad::gauss_count; ++j1 )
00079 {
00080 x[0] = LinearQuad::gauss[j1][1];
00081 double w1 = LinearQuad::gauss[j1][0];
00082 for( unsigned int j2 = 0; j2 < LinearQuad::gauss_count; ++j2 )
00083 {
00084 x[1] = LinearQuad::gauss[j2][1];
00085 double w2 = LinearQuad::gauss[j2][0];
00086 rval = evalFcn( x.array(), field, ndim, num_tuples, NULL, tmp_result );
00087 if( MB_SUCCESS != rval ) return rval;
00088 rval = jacobianFcn( x.array(), verts, nverts, ndim, work, J[0] );
00089 if( MB_SUCCESS != rval ) return rval;
00090 double tmp_det = w1 * w2 * J.determinant();
00091 for( int i = 0; i < num_tuples; i++ )
00092 result[i] += tmp_result[i] * tmp_det;
00093 }
00094 }
00095 return MB_SUCCESS;
00096 } // LinearHex::integrate_vector()
00097
00098 ErrorCode LinearQuad::reverseEvalFcn( EvalFcn eval,
00099 JacobianFcn jacob,
00100 InsideFcn ins,
00101 const double* posn,
00102 const double* verts,
00103 const int nverts,
00104 const int ndim,
00105 const double iter_tol,
00106 const double inside_tol,
00107 double* work,
00108 double* params,
00109 int* is_inside )
00110 {
00111 return EvalSet::evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
00112 is_inside );
00113 }
00114
00115 int LinearQuad::insideFcn( const double* params, const int ndim, const double tol )
00116 {
00117 return EvalSet::inside_function( params, ndim, tol );
00118 }
00119
00120 ErrorCode LinearQuad::normalFcn( const int ientDim,
00121 const int facet,
00122 const int nverts,
00123 const double* verts,
00124 double normal[3] )
00125 {
00126 // assert(facet <4 && ientDim == 1 && nverts==4);
00127 if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed quad :: expected value = 4" );
00128 if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " );
00129 if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-3" );
00130
00131 // Get the local vertex ids of local edge
00132 int id0 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][0];
00133 int id1 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][1];
00134
00135 // Find a vector along the edge
00136 double edge[3];
00137 for( int i = 0; i < 3; i++ )
00138 {
00139 edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
00140 }
00141 // Find the normal of the face
00142 double x0[3], x1[3], fnrm[3];
00143 for( int i = 0; i < 3; i++ )
00144 {
00145 x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i];
00146 x1[i] = verts[3 * 3 + i] - verts[3 * 0 + i];
00147 }
00148 fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2];
00149 fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2];
00150 fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1];
00151
00152 // Find the normal of the edge as the cross product of edge and face normal
00153
00154 double a = edge[1] * fnrm[2] - fnrm[1] * edge[2];
00155 double b = edge[2] * fnrm[0] - fnrm[2] * edge[0];
00156 double c = edge[0] * fnrm[1] - fnrm[0] * edge[1];
00157 double nrm = sqrt( a * a + b * b + c * c );
00158
00159 if( nrm > std::numeric_limits< double >::epsilon() )
00160 {
00161 normal[0] = a / nrm;
00162 normal[1] = b / nrm;
00163 normal[2] = c / nrm;
00164 }
00165 return MB_SUCCESS;
00166 }
00167
00168 } // namespace moab