Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #include "moab/LocalDiscretization/LinearTet.hpp" 00002 #include "moab/Forward.hpp" 00003 #include <algorithm> 00004 #include <cmath> 00005 #include <limits> 00006 00007 namespace moab 00008 { 00009 00010 const double LinearTet::corner[4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; 00011 00012 ErrorCode LinearTet::initFcn( const double* verts, const int nverts, double*& work ) 00013 { 00014 // allocate work array as: 00015 // work[0..8] = T 00016 // work[9..17] = Tinv 00017 // work[18] = detT 00018 // work[19] = detTinv 00019 if( nverts != 4 ) 00020 { 00021 std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n"; 00022 return MB_FAILURE; 00023 } 00024 00025 assert( verts ); 00026 00027 Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 00028 verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1], 00029 verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1], 00030 verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 00031 verts[3 * 3 + 2] - verts[0 * 3 + 2] ); 00032 00033 // Update the work array 00034 if( !work ) work = new double[20]; 00035 00036 J.copyto( work ); 00037 J.inverse().copyto( work + Matrix3::size ); 00038 work[18] = J.determinant(); 00039 work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] ); 00040 00041 return MB_SUCCESS; 00042 } 00043 00044 ErrorCode LinearTet::evalFcn( const double* params, 00045 const double* field, 00046 const int /*ndim*/, 00047 const int num_tuples, 00048 double* /*work*/, 00049 double* result ) 00050 { 00051 assert( params && field && num_tuples > 0 ); 00052 std::vector< double > f0( num_tuples ); 00053 std::copy( field, field + num_tuples, f0.begin() ); 00054 std::copy( field, field + num_tuples, result ); 00055 00056 for( unsigned i = 1; i < 4; ++i ) 00057 { 00058 double p = 0.5 * ( params[i - 1] + 1 ); // transform from -1 <= p <= 1 to 0 <= p <= 1 00059 for( int j = 0; j < num_tuples; j++ ) 00060 result[j] += ( field[i * num_tuples + j] - f0[j] ) * p; 00061 } 00062 00063 return MB_SUCCESS; 00064 } 00065 00066 ErrorCode LinearTet::integrateFcn( const double* field, 00067 const double* /*verts*/, 00068 const int nverts, 00069 const int /*ndim*/, 00070 const int num_tuples, 00071 double* work, 00072 double* result ) 00073 { 00074 assert( field && num_tuples > 0 ); 00075 std::fill( result, result + num_tuples, 0.0 ); 00076 for( int i = 0; i < nverts; ++i ) 00077 { 00078 for( int j = 0; j < num_tuples; j++ ) 00079 result[j] += field[i * num_tuples + j]; 00080 } 00081 double tmp = work[18] / 24.0; 00082 for( int i = 0; i < num_tuples; i++ ) 00083 result[i] *= tmp; 00084 00085 return MB_SUCCESS; 00086 } 00087 00088 ErrorCode LinearTet::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result ) 00089 { 00090 // jacobian is cached in work array 00091 assert( work ); 00092 std::copy( work, work + 9, result ); 00093 return MB_SUCCESS; 00094 } 00095 00096 ErrorCode LinearTet::reverseEvalFcn( EvalFcn eval, 00097 JacobianFcn jacob, 00098 InsideFcn ins, 00099 const double* posn, 00100 const double* verts, 00101 const int nverts, 00102 const int ndim, 00103 const double iter_tol, 00104 const double inside_tol, 00105 double* work, 00106 double* params, 00107 int* is_inside ) 00108 { 00109 assert( posn && verts ); 00110 return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, 00111 is_inside ); 00112 } 00113 00114 int LinearTet::insideFcn( const double* params, const int, const double tol ) 00115 { 00116 return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol && 00117 params[0] + params[1] + params[2] <= 1.0 + tol ); 00118 } 00119 00120 ErrorCode LinearTet::evaluate_reverse( EvalFcn eval, 00121 JacobianFcn jacob, 00122 InsideFcn inside_f, 00123 const double* posn, 00124 const double* verts, 00125 const int nverts, 00126 const int ndim, 00127 const double iter_tol, 00128 const double inside_tol, 00129 double* work, 00130 double* params, 00131 int* inside ) 00132 { 00133 // TODO: should differentiate between epsilons used for 00134 // Newton Raphson iteration, and epsilons used for curved boundary geometry errors 00135 // right now, fix the tolerance used for NR 00136 const double error_tol_sqr = iter_tol * iter_tol; 00137 CartVect* cvparams = reinterpret_cast< CartVect* >( params ); 00138 const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn ); 00139 00140 // find best initial guess to improve convergence 00141 CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ), 00142 CartVect( -1, -1, 1 ) }; 00143 double resl = std::numeric_limits< double >::max(); 00144 CartVect new_pos, tmp_pos; 00145 ErrorCode rval; 00146 for( unsigned int i = 0; i < 4; i++ ) 00147 { 00148 rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() ); 00149 if( MB_SUCCESS != rval ) return rval; 00150 double tmp_resl = ( tmp_pos - *cvposn ).length_squared(); 00151 if( tmp_resl < resl ) 00152 { 00153 *cvparams = tmp_params[i]; 00154 new_pos = tmp_pos; 00155 resl = tmp_resl; 00156 } 00157 } 00158 00159 // residual is diff between old and new pos; need to minimize that 00160 CartVect res = new_pos - *cvposn; 00161 Matrix3 J; 00162 rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() ); 00163 #ifndef NDEBUG 00164 double det = J.determinant(); 00165 assert( det > std::numeric_limits< double >::epsilon() ); 00166 #endif 00167 Matrix3 Ji = J.inverse(); 00168 00169 int iters = 0; 00170 // while |res| larger than tol 00171 int dum, *tmp_inside = ( inside ? inside : &dum ); 00172 while( res % res > error_tol_sqr ) 00173 { 00174 if( ++iters > 25 ) 00175 { 00176 // if we haven't converged but we're outside, that's defined as success 00177 *tmp_inside = ( *inside_f )( params, ndim, inside_tol ); 00178 if( !( *tmp_inside ) ) 00179 return MB_SUCCESS; 00180 else 00181 return MB_INDEX_OUT_OF_RANGE; 00182 } 00183 00184 // new params tries to eliminate residual 00185 *cvparams -= Ji * res; 00186 00187 // get the new forward-evaluated position, and its difference from the target pt 00188 rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() ); 00189 if( MB_SUCCESS != rval ) return rval; 00190 res = new_pos - *cvposn; 00191 } 00192 00193 if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol ); 00194 00195 return MB_SUCCESS; 00196 } // Map::evaluate_reverse() 00197 00198 ErrorCode LinearTet::normalFcn( const int ientDim, 00199 const int facet, 00200 const int nverts, 00201 const double* verts, 00202 double normal[3] ) 00203 { 00204 // assert(facet < 4 && ientDim == 2 && nverts == 4); 00205 if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " ); 00206 if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " ); 00207 if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" ); 00208 00209 int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0]; 00210 int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1]; 00211 int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2]; 00212 00213 double x0[3], x1[3]; 00214 00215 for( int i = 0; i < 3; i++ ) 00216 { 00217 x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; 00218 x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i]; 00219 } 00220 00221 double a = x0[1] * x1[2] - x1[1] * x0[2]; 00222 double b = x1[0] * x0[2] - x0[0] * x1[2]; 00223 double c = x0[0] * x1[1] - x1[0] * x0[1]; 00224 double nrm = sqrt( a * a + b * b + c * c ); 00225 00226 if( nrm > std::numeric_limits< double >::epsilon() ) 00227 { 00228 normal[0] = a / nrm; 00229 normal[1] = b / nrm; 00230 normal[2] = c / nrm; 00231 } 00232 return MB_SUCCESS; 00233 } 00234 00235 } // namespace moab