![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #include "moab/LocalDiscretization/LinearTet.hpp"
00002 #include "moab/Forward.hpp"
00003 #include
00004 #include
00005 #include
00006
00007 namespace moab
00008 {
00009
00010 const double LinearTet::corner[4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
00011
00012 ErrorCode LinearTet::initFcn( const double* verts, const int nverts, double*& work )
00013 {
00014 // allocate work array as:
00015 // work[0..8] = T
00016 // work[9..17] = Tinv
00017 // work[18] = detT
00018 // work[19] = detTinv
00019 if( nverts != 4 )
00020 {
00021 std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n";
00022 return MB_FAILURE;
00023 }
00024
00025 assert( verts );
00026
00027 Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0],
00028 verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1],
00029 verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1],
00030 verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2],
00031 verts[3 * 3 + 2] - verts[0 * 3 + 2] );
00032
00033 // Update the work array
00034 if( !work ) work = new double[20];
00035
00036 J.copyto( work );
00037 J.inverse().copyto( work + Matrix3::size );
00038 work[18] = J.determinant();
00039 work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );
00040
00041 return MB_SUCCESS;
00042 }
00043
00044 ErrorCode LinearTet::evalFcn( const double* params,
00045 const double* field,
00046 const int /*ndim*/,
00047 const int num_tuples,
00048 double* /*work*/,
00049 double* result )
00050 {
00051 assert( params && field && num_tuples > 0 );
00052 std::vector< double > f0( num_tuples );
00053 std::copy( field, field + num_tuples, f0.begin() );
00054 std::copy( field, field + num_tuples, result );
00055
00056 for( unsigned i = 1; i < 4; ++i )
00057 {
00058 double p = 0.5 * ( params[i - 1] + 1 ); // transform from -1 <= p <= 1 to 0 <= p <= 1
00059 for( int j = 0; j < num_tuples; j++ )
00060 result[j] += ( field[i * num_tuples + j] - f0[j] ) * p;
00061 }
00062
00063 return MB_SUCCESS;
00064 }
00065
00066 ErrorCode LinearTet::integrateFcn( const double* field,
00067 const double* /*verts*/,
00068 const int nverts,
00069 const int /*ndim*/,
00070 const int num_tuples,
00071 double* work,
00072 double* result )
00073 {
00074 assert( field && num_tuples > 0 );
00075 std::fill( result, result + num_tuples, 0.0 );
00076 for( int i = 0; i < nverts; ++i )
00077 {
00078 for( int j = 0; j < num_tuples; j++ )
00079 result[j] += field[i * num_tuples + j];
00080 }
00081 double tmp = work[18] / 24.0;
00082 for( int i = 0; i < num_tuples; i++ )
00083 result[i] *= tmp;
00084
00085 return MB_SUCCESS;
00086 }
00087
00088 ErrorCode LinearTet::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result )
00089 {
00090 // jacobian is cached in work array
00091 assert( work );
00092 std::copy( work, work + 9, result );
00093 return MB_SUCCESS;
00094 }
00095
00096 ErrorCode LinearTet::reverseEvalFcn( EvalFcn eval,
00097 JacobianFcn jacob,
00098 InsideFcn ins,
00099 const double* posn,
00100 const double* verts,
00101 const int nverts,
00102 const int ndim,
00103 const double iter_tol,
00104 const double inside_tol,
00105 double* work,
00106 double* params,
00107 int* is_inside )
00108 {
00109 assert( posn && verts );
00110 return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
00111 is_inside );
00112 }
00113
00114 int LinearTet::insideFcn( const double* params, const int, const double tol )
00115 {
00116 return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol &&
00117 params[0] + params[1] + params[2] <= 1.0 + tol );
00118 }
00119
00120 ErrorCode LinearTet::evaluate_reverse( EvalFcn eval,
00121 JacobianFcn jacob,
00122 InsideFcn inside_f,
00123 const double* posn,
00124 const double* verts,
00125 const int nverts,
00126 const int ndim,
00127 const double iter_tol,
00128 const double inside_tol,
00129 double* work,
00130 double* params,
00131 int* inside )
00132 {
00133 // TODO: should differentiate between epsilons used for
00134 // Newton Raphson iteration, and epsilons used for curved boundary geometry errors
00135 // right now, fix the tolerance used for NR
00136 const double error_tol_sqr = iter_tol * iter_tol;
00137 CartVect* cvparams = reinterpret_cast< CartVect* >( params );
00138 const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn );
00139
00140 // find best initial guess to improve convergence
00141 CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ),
00142 CartVect( -1, -1, 1 ) };
00143 double resl = std::numeric_limits< double >::max();
00144 CartVect new_pos, tmp_pos;
00145 ErrorCode rval;
00146 for( unsigned int i = 0; i < 4; i++ )
00147 {
00148 rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() );
00149 if( MB_SUCCESS != rval ) return rval;
00150 double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
00151 if( tmp_resl < resl )
00152 {
00153 *cvparams = tmp_params[i];
00154 new_pos = tmp_pos;
00155 resl = tmp_resl;
00156 }
00157 }
00158
00159 // residual is diff between old and new pos; need to minimize that
00160 CartVect res = new_pos - *cvposn;
00161 Matrix3 J;
00162 rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() );
00163 #ifndef NDEBUG
00164 double det = J.determinant();
00165 assert( det > std::numeric_limits< double >::epsilon() );
00166 #endif
00167 Matrix3 Ji = J.inverse();
00168
00169 int iters = 0;
00170 // while |res| larger than tol
00171 int dum, *tmp_inside = ( inside ? inside : &dum );
00172 while( res % res > error_tol_sqr )
00173 {
00174 if( ++iters > 25 )
00175 {
00176 // if we haven't converged but we're outside, that's defined as success
00177 *tmp_inside = ( *inside_f )( params, ndim, inside_tol );
00178 if( !( *tmp_inside ) )
00179 return MB_SUCCESS;
00180 else
00181 return MB_INDEX_OUT_OF_RANGE;
00182 }
00183
00184 // new params tries to eliminate residual
00185 *cvparams -= Ji * res;
00186
00187 // get the new forward-evaluated position, and its difference from the target pt
00188 rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() );
00189 if( MB_SUCCESS != rval ) return rval;
00190 res = new_pos - *cvposn;
00191 }
00192
00193 if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );
00194
00195 return MB_SUCCESS;
00196 } // Map::evaluate_reverse()
00197
00198 ErrorCode LinearTet::normalFcn( const int ientDim,
00199 const int facet,
00200 const int nverts,
00201 const double* verts,
00202 double normal[3] )
00203 {
00204 // assert(facet < 4 && ientDim == 2 && nverts == 4);
00205 if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " );
00206 if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " );
00207 if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" );
00208
00209 int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0];
00210 int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1];
00211 int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2];
00212
00213 double x0[3], x1[3];
00214
00215 for( int i = 0; i < 3; i++ )
00216 {
00217 x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
00218 x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i];
00219 }
00220
00221 double a = x0[1] * x1[2] - x1[1] * x0[2];
00222 double b = x1[0] * x0[2] - x0[0] * x1[2];
00223 double c = x0[0] * x1[1] - x1[0] * x0[1];
00224 double nrm = sqrt( a * a + b * b + c * c );
00225
00226 if( nrm > std::numeric_limits< double >::epsilon() )
00227 {
00228 normal[0] = a / nrm;
00229 normal[1] = b / nrm;
00230 normal[2] = c / nrm;
00231 }
00232 return MB_SUCCESS;
00233 }
00234
00235 } // namespace moab