![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #include "moab/LocalDiscretization/LinearTri.hpp"
00002 #include "moab/Forward.hpp"
00003 #include
00004 #include
00005 #include
00006
00007 namespace moab
00008 {
00009
00010 const double LinearTri::corner[3][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 } };
00011
00012 ErrorCode LinearTri::initFcn( const double* verts, const int nverts, double*& work )
00013 {
00014 // allocate work array as:
00015 // work[0..8] = T
00016 // work[9..17] = Tinv
00017 // work[18] = detT
00018 // work[19] = detTinv
00019 if( nverts != 3 )
00020 {
00021 std::cout << "Invalid Triangle. Expected 3 vertices.\n";
00022 return MB_FAILURE;
00023 }
00024
00025 assert( verts );
00026
00027 Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 0.0,
00028 verts[1 * 3 + 1] - verts[0 * 3 + 1], verts[2 * 3 + 1] - verts[0 * 3 + 1], 0.0,
00029 verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 1.0 );
00030 J *= 0.5;
00031
00032 // Update the work array
00033 if( !work ) work = new double[20];
00034
00035 J.copyto( work );
00036 J.inverse().copyto( work + Matrix3::size );
00037 work[18] = J.determinant();
00038 work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );
00039
00040 return MB_SUCCESS;
00041 }
00042
00043 ErrorCode LinearTri::evalFcn( const double* params,
00044 const double* field,
00045 const int /*ndim*/,
00046 const int num_tuples,
00047 double* /*work*/,
00048 double* result )
00049 {
00050 assert( params && field && num_tuples > 0 );
00051 // convert to [0,1]
00052 double p1 = 0.5 * ( 1.0 + params[0] ), p2 = 0.5 * ( 1.0 + params[1] ), p0 = 1.0 - p1 - p2;
00053
00054 for( int j = 0; j < num_tuples; j++ )
00055 result[j] = p0 * field[0 * num_tuples + j] + p1 * field[1 * num_tuples + j] + p2 * field[2 * num_tuples + j];
00056
00057 return MB_SUCCESS;
00058 }
00059
00060 ErrorCode LinearTri::integrateFcn( const double* field,
00061 const double* /*verts*/,
00062 const int nverts,
00063 const int /*ndim*/,
00064 const int num_tuples,
00065 double* work,
00066 double* result )
00067 {
00068 assert( field && num_tuples > 0 );
00069 std::fill( result, result + num_tuples, 0.0 );
00070 for( int i = 0; i < nverts; ++i )
00071 {
00072 for( int j = 0; j < num_tuples; j++ )
00073 result[j] += field[i * num_tuples + j];
00074 }
00075 double tmp = work[18] / 6.0;
00076 for( int i = 0; i < num_tuples; i++ )
00077 result[i] *= tmp;
00078
00079 return MB_SUCCESS;
00080 }
00081
00082 ErrorCode LinearTri::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result )
00083 {
00084 // jacobian is cached in work array
00085 assert( work );
00086 std::copy( work, work + 9, result );
00087 return MB_SUCCESS;
00088 }
00089
00090 ErrorCode LinearTri::reverseEvalFcn( EvalFcn eval,
00091 JacobianFcn jacob,
00092 InsideFcn ins,
00093 const double* posn,
00094 const double* verts,
00095 const int nverts,
00096 const int ndim,
00097 const double iter_tol,
00098 const double inside_tol,
00099 double* work,
00100 double* params,
00101 int* is_inside )
00102 {
00103 assert( posn && verts );
00104 return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
00105 is_inside );
00106 }
00107
00108 int LinearTri::insideFcn( const double* params, const int, const double tol )
00109 {
00110 return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[0] + params[1] <= 1.0 + tol );
00111 }
00112
00113 ErrorCode LinearTri::evaluate_reverse( EvalFcn eval,
00114 JacobianFcn jacob,
00115 InsideFcn inside_f,
00116 const double* posn,
00117 const double* verts,
00118 const int nverts,
00119 const int ndim,
00120 const double iter_tol,
00121 const double inside_tol,
00122 double* work,
00123 double* params,
00124 int* inside )
00125 {
00126 // TODO: should differentiate between epsilons used for
00127 // Newton Raphson iteration, and epsilons used for curved boundary geometry errors
00128 // right now, fix the tolerance used for NR
00129 const double error_tol_sqr = iter_tol * iter_tol;
00130 CartVect* cvparams = reinterpret_cast< CartVect* >( params );
00131 const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn );
00132
00133 // find best initial guess to improve convergence
00134 CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ) };
00135 double resl = std::numeric_limits< double >::max();
00136 CartVect new_pos, tmp_pos;
00137 ErrorCode rval;
00138 for( unsigned int i = 0; i < 3; i++ )
00139 {
00140 rval = ( *eval )( tmp_params[i].array(), verts, ndim, 3, work, tmp_pos.array() );
00141 if( MB_SUCCESS != rval ) return rval;
00142 double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
00143 if( tmp_resl < resl )
00144 {
00145 *cvparams = tmp_params[i];
00146 new_pos = tmp_pos;
00147 resl = tmp_resl;
00148 }
00149 }
00150
00151 // residual is diff between old and new pos; need to minimize that
00152 CartVect res = new_pos - *cvposn;
00153 Matrix3 J;
00154 rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J[0] );
00155 #ifndef NDEBUG
00156 double det = J.determinant();
00157 assert( det > std::numeric_limits< double >::epsilon() );
00158 #endif
00159 Matrix3 Ji = J.inverse();
00160
00161 int iters = 0;
00162 // while |res| larger than tol
00163 while( res % res > error_tol_sqr )
00164 {
00165 if( ++iters > 25 ) return MB_FAILURE;
00166
00167 // new params tries to eliminate residual
00168 *cvparams -= Ji * res;
00169
00170 // get the new forward-evaluated position, and its difference from the target pt
00171 rval = ( *eval )( params, verts, ndim, 3, work, new_pos.array() );
00172 if( MB_SUCCESS != rval ) return rval;
00173 res = new_pos - *cvposn;
00174 }
00175
00176 if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );
00177
00178 return MB_SUCCESS;
00179 } // Map::evaluate_reverse()
00180
00181 /* ErrorCode LinearTri::get_normal( int facet, double *work, double *normal)
00182 {
00183 ErrorCode error;
00184 //Get the local vertex ids of local edge
00185 int id1 = ledges[facet][0];
00186 int id2 = ledges[facet][1];
00187
00188 //Find the normal to the face
00189 double face_normal[3];
00190
00191
00192 }*/
00193
00194 ErrorCode LinearTri::normalFcn( const int ientDim,
00195 const int facet,
00196 const int nverts,
00197 const double* verts,
00198 double normal[3] )
00199 {
00200 // assert(facet < 3 && ientDim == 1 && nverts==3);
00201 if( nverts != 3 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed triangle :: expected value = 3 " );
00202 if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " );
00203 if( facet > 3 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-2" );
00204
00205 // Get the local vertex ids of local edge
00206 int id0 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][0];
00207 int id1 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][1];
00208
00209 // Find a vector along the edge
00210 double edge[3];
00211 for( int i = 0; i < 3; i++ )
00212 {
00213 edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
00214 }
00215 // Find the normal of the face
00216 double x0[3], x1[3], fnrm[3];
00217 for( int i = 0; i < 3; i++ )
00218 {
00219 x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i];
00220 x1[i] = verts[3 * 2 + i] - verts[3 * 0 + i];
00221 }
00222 fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2];
00223 fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2];
00224 fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1];
00225
00226 // Find the normal of the edge as the cross product of edge and face normal
00227
00228 double a = edge[1] * fnrm[2] - fnrm[1] * edge[2];
00229 double b = edge[2] * fnrm[0] - fnrm[2] * edge[0];
00230 double c = edge[0] * fnrm[1] - fnrm[0] * edge[1];
00231 double nrm = sqrt( a * a + b * b + c * c );
00232
00233 if( nrm > std::numeric_limits< double >::epsilon() )
00234 {
00235 normal[0] = a / nrm;
00236 normal[1] = b / nrm;
00237 normal[2] = c / nrm;
00238 }
00239 return MB_SUCCESS;
00240 }
00241
00242 } // namespace moab