![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /*
00002 * MOAB, a Mesh-Oriented datABase, is a software component for creating,
00003 * storing and accessing finite element mesh data.
00004 *
00005 * Copyright 2004 Sandia Corporation. Under the terms of Contract
00006 * DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
00007 * retains certain rights in this software.
00008 *
00009 * This library is free software; you can redistribute it and/or
00010 * modify it under the terms of the GNU Lesser General Public
00011 * License as published by the Free Software Foundation; either
00012 * version 2.1 of the License, or (at your option) any later version.
00013 */
00014
00015 /**\file Matrix3.hpp
00016 *\author Jason Kraftcheck (kraftche@cae.wisc.edu)
00017 *\date 2006-07-18
00018 *\date 2012-08-2 Updated by rhl to be more generic. less code that does more!
00019 * TODO: Remove all 'inline' keywords as it is only a suggestion to the compiler
00020 * anyways, and it will ignore it or add it when it thinks its necessary.
00021 *\date 2016-08-03 Updated to use Eigen3 support underneath to improve performance
00022 */
00023
00024 #ifndef MOAB_MATRIX3_HPP
00025 #define MOAB_MATRIX3_HPP
00026
00027 #include
00028 #include
00029 #include
00030 #include
00031 #include
00032
00033 #include "moab/MOABConfig.h"
00034 #include "moab/ErrorHandler.hpp"
00035 #include "moab/Util.hpp"
00036 #include "moab/Types.hpp"
00037 #include "moab/CartVect.hpp"
00038
00039 #ifndef MOAB_HAVE_LAPACK
00040
00041 #ifndef MOAB_HAVE_EIGEN3
00042 #error Need either Eigen3 or BLAS/LAPACK libraries
00043 #endif
00044
00045 #ifdef __GNUC__
00046 // save diagnostic state
00047 #pragma GCC diagnostic push
00048 // turn off the specific warning. Can also use "-Wshadow"
00049 #pragma GCC diagnostic ignored "-Wshadow"
00050 #endif
00051
00052 #define EIGEN_DEFAULT_TO_ROW_MAJOR
00053 #define EIGEN_INITIALIZE_MATRICES_BY_ZERO
00054 // #define EIGEN_NO_STATIC_ASSERT
00055 #include "Eigen/Dense"
00056
00057 #ifdef __GNUC__
00058 // turn the warnings back on
00059 #pragma GCC diagnostic pop
00060 #endif
00061
00062 #else
00063
00064 #if defined( MOAB_FC_FUNC_ )
00065 #define MOAB_FC_WRAPPER MOAB_FC_FUNC_
00066 #elif defined( MOAB_FC_FUNC )
00067 #define MOAB_FC_WRAPPER MOAB_FC_FUNC
00068 #else
00069 #define MOAB_FC_WRAPPER( name, NAME ) name##_
00070 #endif
00071
00072 // We will rely on LAPACK directly
00073
00074 #ifdef WIN32
00075
00076 // Should use second form below for windows but
00077 // needed to do this to make it work.
00078 // TODO: Need to clean this up
00079 #define MOAB_dsyevd MOAB_FC_FUNC( dsyevd, DSYEVD )
00080 #define MOAB_dsyevr MOAB_FC_FUNC( dsyevr, DSYEVR )
00081 #define MOAB_dgeev MOAB_FC_FUNC( dgeev, DGEEV )
00082 #define MOAB_dgetrf MOAB_FC_FUNC( dgetrf, DGETRF )
00083 #define MOAB_dgetri MOAB_FC_FUNC( dgetri, DGETRI )
00084
00085 #else
00086
00087 #define MOAB_dsyevd MOAB_FC_WRAPPER( dsyevd, DSYEVD )
00088 #define MOAB_dsyevr MOAB_FC_WRAPPER( dsyevr, DSYEVR )
00089 #define MOAB_dgeev MOAB_FC_WRAPPER( dgeev, DGEEV )
00090 #define MOAB_dgetrf MOAB_FC_WRAPPER( dgetrf, DGETRF )
00091 #define MOAB_dgetri MOAB_FC_WRAPPER( dgetri, DGETRI )
00092
00093 #endif
00094
00095 extern "C" {
00096
00097 // Computes all eigenvalues and, optionally, eigenvectors of a
00098 // real symmetric matrix A. If eigenvectors are desired, it uses a
00099 // divide and conquer algorithm.
00100 void MOAB_dsyevd( char* jobz,
00101 char* uplo,
00102 int* n,
00103 double a[],
00104 int* lda,
00105 double w[],
00106 double work[],
00107 int* lwork,
00108 int iwork[],
00109 int* liwork,
00110 int* info );
00111
00112 // Computes selected eigenvalues and, optionally, eigenvectors
00113 // of a real symmetric matrix A. Eigenvalues and eigenvectors can be
00114 // selected by specifying either a range of values or a range of
00115 // indices for the desired eigenvalues.
00116 void MOAB_dsyevr( char* jobz,
00117 char* range,
00118 char* uplo,
00119 int* n,
00120 double* a,
00121 int* lda,
00122 double* vl,
00123 double* vu,
00124 int* il,
00125 int* iu,
00126 double* abstol,
00127 int* m,
00128 double* w,
00129 double* z,
00130 int* ldz,
00131 int* isuppz,
00132 double* work,
00133 int* lwork,
00134 int* iwork,
00135 int* liwork,
00136 int* info );
00137
00138 // Computes for an N-by-N real nonsymmetric matrix A, the
00139 // eigenvalues and, optionally, the left and/or right eigenvectors.
00140 void MOAB_dgeev( char* jobvl,
00141 char* jobvr,
00142 int* n,
00143 double* a,
00144 int* lda,
00145 double* wr,
00146 double* wi,
00147 double* vl,
00148 int* ldvl,
00149 double* vr,
00150 int* ldvr,
00151 double* work,
00152 int* lwork,
00153 int* info );
00154
00155 // Computes an LU factorization of a general M-by-N matrix A
00156 // using partial pivoting with row interchanges.
00157 void MOAB_dgetrf( int* M, int* N, double* A, int* lda, int* IPIV, int* INFO );
00158
00159 // Computes the inverse of a matrix using the LU factorization
00160 // computed by DGETRF.
00161 void MOAB_dgetri( int* N, double* A, int* lda, int* IPIV, double* WORK, int* lwork, int* INFO );
00162 }
00163
00164 #include
00165 #define MOAB_DMEMZERO( a, b ) memset( a, 0, ( b ) * sizeof( double ) )
00166
00167 #endif
00168
00169 namespace moab
00170 {
00171
00172 namespace Matrix
00173 {
00174
00175 template < typename Matrix >
00176 inline Matrix mmult3( const Matrix& a, const Matrix& b )
00177 {
00178 return Matrix( a( 0, 0 ) * b( 0, 0 ) + a( 0, 1 ) * b( 1, 0 ) + a( 0, 2 ) * b( 2, 0 ),
00179 a( 0, 0 ) * b( 0, 1 ) + a( 0, 1 ) * b( 1, 1 ) + a( 0, 2 ) * b( 2, 1 ),
00180 a( 0, 0 ) * b( 0, 2 ) + a( 0, 1 ) * b( 1, 2 ) + a( 0, 2 ) * b( 2, 2 ),
00181 a( 1, 0 ) * b( 0, 0 ) + a( 1, 1 ) * b( 1, 0 ) + a( 1, 2 ) * b( 2, 0 ),
00182 a( 1, 0 ) * b( 0, 1 ) + a( 1, 1 ) * b( 1, 1 ) + a( 1, 2 ) * b( 2, 1 ),
00183 a( 1, 0 ) * b( 0, 2 ) + a( 1, 1 ) * b( 1, 2 ) + a( 1, 2 ) * b( 2, 2 ),
00184 a( 2, 0 ) * b( 0, 0 ) + a( 2, 1 ) * b( 1, 0 ) + a( 2, 2 ) * b( 2, 0 ),
00185 a( 2, 0 ) * b( 0, 1 ) + a( 2, 1 ) * b( 1, 1 ) + a( 2, 2 ) * b( 2, 1 ),
00186 a( 2, 0 ) * b( 0, 2 ) + a( 2, 1 ) * b( 1, 2 ) + a( 2, 2 ) * b( 2, 2 ) );
00187 }
00188
00189 template < typename Matrix >
00190 inline const Matrix inverse( const Matrix& d )
00191 {
00192 const double det = 1.0 / determinant3( d );
00193 return inverse( d, det );
00194 }
00195
00196 template < typename Vector, typename Matrix >
00197 inline Vector vector_matrix( const Vector& v, const Matrix& m )
00198 {
00199 return Vector( v[0] * m( 0, 0 ) + v[1] * m( 1, 0 ) + v[2] * m( 2, 0 ),
00200 v[0] * m( 0, 1 ) + v[1] * m( 1, 1 ) + v[2] * m( 2, 1 ),
00201 v[0] * m( 0, 2 ) + v[1] * m( 1, 2 ) + v[2] * m( 2, 2 ) );
00202 }
00203
00204 template < typename Vector, typename Matrix >
00205 inline Vector matrix_vector( const Matrix& m, const Vector& v )
00206 {
00207 Vector res = v;
00208 res[0] = v[0] * m( 0, 0 ) + v[1] * m( 0, 1 ) + v[2] * m( 0, 2 );
00209 res[1] = v[0] * m( 1, 0 ) + v[1] * m( 1, 1 ) + v[2] * m( 1, 2 );
00210 res[2] = v[0] * m( 2, 0 ) + v[1] * m( 2, 1 ) + v[2] * m( 2, 2 );
00211 return res;
00212 }
00213
00214 } // namespace Matrix
00215
00216 class Matrix3
00217 {
00218
00219 public:
00220 const static int size = 9;
00221
00222 private:
00223 #ifndef MOAB_HAVE_LAPACK
00224 Eigen::Matrix3d _mat;
00225 #else
00226 double _mat[size];
00227 #endif
00228
00229 public:
00230 // Default Constructor
00231 inline Matrix3()
00232 {
00233 #ifndef MOAB_HAVE_LAPACK
00234 _mat.fill( 0.0 );
00235 #else
00236 MOAB_DMEMZERO( _mat, Matrix3::size );
00237 #endif
00238 }
00239
00240 #ifndef MOAB_HAVE_LAPACK
00241 inline Matrix3( Eigen::Matrix3d mat ) : _mat( mat ) {}
00242 #endif
00243
00244 // TODO: Deprecate this.
00245 // Then we can go from three Constructors to one.
00246 inline Matrix3( double diagonal )
00247 {
00248 #ifndef MOAB_HAVE_LAPACK
00249 _mat << diagonal, 0.0, 0.0, 0.0, diagonal, 0.0, 0.0, 0.0, diagonal;
00250 #else
00251 MOAB_DMEMZERO( _mat, Matrix3::size );
00252 _mat[0] = _mat[4] = _mat[8] = diagonal;
00253 #endif
00254 }
00255
00256 inline Matrix3( const CartVect& diagonal )
00257 {
00258 #ifndef MOAB_HAVE_LAPACK
00259 _mat << diagonal[0], 0.0, 0.0, 0.0, diagonal[1], 0.0, 0.0, 0.0, diagonal[2];
00260 #else
00261 MOAB_DMEMZERO( _mat, Matrix3::size );
00262 _mat[0] = diagonal[0];
00263 _mat[4] = diagonal[1];
00264 _mat[8] = diagonal[2];
00265 #endif
00266 }
00267
00268 // TODO: not strictly correct as the Matrix3 object
00269 // is a double d[ 9] so the only valid model of T is
00270 // double, or any refinement (int, float)
00271 //*but* it doesn't really matter anything else
00272 // will fail to compile.
00273 inline Matrix3( const std::vector< double >& diagonal )
00274 {
00275 #ifndef MOAB_HAVE_LAPACK
00276 _mat << diagonal[0], 0.0, 0.0, 0.0, diagonal[1], 0.0, 0.0, 0.0, diagonal[2];
00277 #else
00278 MOAB_DMEMZERO( _mat, Matrix3::size );
00279 _mat[0] = diagonal[0];
00280 _mat[4] = diagonal[1];
00281 _mat[8] = diagonal[2];
00282 #endif
00283 }
00284
00285 inline Matrix3( double v00,
00286 double v01,
00287 double v02,
00288 double v10,
00289 double v11,
00290 double v12,
00291 double v20,
00292 double v21,
00293 double v22 )
00294 {
00295 #ifndef MOAB_HAVE_LAPACK
00296 _mat << v00, v01, v02, v10, v11, v12, v20, v21, v22;
00297 #else
00298 MOAB_DMEMZERO( _mat, Matrix3::size );
00299 _mat[0] = v00;
00300 _mat[1] = v01;
00301 _mat[2] = v02;
00302 _mat[3] = v10;
00303 _mat[4] = v11;
00304 _mat[5] = v12;
00305 _mat[6] = v20;
00306 _mat[7] = v21;
00307 _mat[8] = v22;
00308 #endif
00309 }
00310
00311 // Copy constructor
00312 Matrix3( const Matrix3& f )
00313 {
00314 #ifndef MOAB_HAVE_LAPACK
00315 _mat = f._mat;
00316 #else
00317 memcpy( _mat, f._mat, size * sizeof( double ) );
00318 #endif
00319 }
00320
00321 // Weird constructors
00322 template < typename Vector >
00323 inline Matrix3( const Vector& row0, const Vector& row1, const Vector& row2, const bool isRow )
00324 {
00325 #ifndef MOAB_HAVE_LAPACK
00326 if( isRow )
00327 {
00328 _mat << row0[0], row0[1], row0[2], row1[0], row1[1], row1[2], row2[0], row2[1], row2[2];
00329 }
00330 else
00331 {
00332 _mat << row0[0], row1[0], row2[0], row0[1], row1[1], row2[1], row0[2], row1[2], row2[2];
00333 }
00334 #else
00335 MOAB_DMEMZERO( _mat, Matrix3::size );
00336 if( isRow )
00337 {
00338 _mat[0] = row0[0];
00339 _mat[1] = row0[1];
00340 _mat[2] = row0[2];
00341 _mat[3] = row1[0];
00342 _mat[4] = row1[1];
00343 _mat[5] = row1[2];
00344 _mat[6] = row2[0];
00345 _mat[7] = row2[1];
00346 _mat[8] = row2[2];
00347 }
00348 else
00349 {
00350 _mat[0] = row0[0];
00351 _mat[1] = row1[0];
00352 _mat[2] = row2[0];
00353 _mat[3] = row0[1];
00354 _mat[4] = row1[1];
00355 _mat[5] = row2[1];
00356 _mat[6] = row0[2];
00357 _mat[7] = row1[2];
00358 _mat[8] = row2[2];
00359 }
00360 #endif
00361 }
00362
00363 #ifndef DEPRECATED
00364 #ifdef __GNUC__
00365 #define DEPRECATED __attribute__( ( deprecated ) )
00366 #else
00367 #pragma message( "WARNING: You need to implement DEPRECATED for this compiler" )
00368 #define DEPRECATED
00369 #endif
00370 #endif
00371
00372 /*
00373 * \deprecated { Use instead the constructor with explicit fourth argument, bool isRow, above }
00374 *
00375 */
00376 inline Matrix3( const double v[size] )
00377 {
00378 #ifndef MOAB_HAVE_LAPACK
00379 _mat << v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[8];
00380 #else
00381 memcpy( _mat, v, size * sizeof( double ) );
00382 #endif
00383 }
00384
00385 inline void copyto( double v[Matrix3::size] )
00386 {
00387 #ifndef MOAB_HAVE_LAPACK
00388 std::copy( _mat.data(), _mat.data() + size, v );
00389 #else
00390 memcpy( v, _mat, size * sizeof( double ) );
00391 #endif
00392 }
00393
00394 inline Matrix3& operator=( const Matrix3& m )
00395 {
00396 #ifndef MOAB_HAVE_LAPACK
00397 _mat = m._mat;
00398 #else
00399 memcpy( _mat, m._mat, size * sizeof( double ) );
00400 #endif
00401 return *this;
00402 }
00403
00404 inline Matrix3& operator=( const double v[size] )
00405 {
00406 #ifndef MOAB_HAVE_LAPACK
00407 _mat << v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[8];
00408 #else
00409 memcpy( _mat, v, size * sizeof( double ) );
00410 #endif
00411 return *this;
00412 }
00413
00414 inline double* operator[]( unsigned i )
00415 {
00416 #ifndef MOAB_HAVE_LAPACK
00417 return _mat.row( i ).data();
00418 #else
00419 return &_mat[i * 3]; // Row Major
00420 #endif
00421 }
00422
00423 inline const double* operator[]( unsigned i ) const
00424 {
00425 #ifndef MOAB_HAVE_LAPACK
00426 return _mat.row( i ).data();
00427 #else
00428 return &_mat[i * 3];
00429 #endif
00430 }
00431
00432 inline double& operator()( unsigned r, unsigned c )
00433 {
00434 #ifndef MOAB_HAVE_LAPACK
00435 return _mat( r, c );
00436 #else
00437 return _mat[r * 3 + c];
00438 #endif
00439 }
00440
00441 inline double operator()( unsigned r, unsigned c ) const
00442 {
00443 #ifndef MOAB_HAVE_LAPACK
00444 return _mat( r, c );
00445 #else
00446 return _mat[r * 3 + c];
00447 #endif
00448 }
00449
00450 inline double& operator()( unsigned i )
00451 {
00452 #ifndef MOAB_HAVE_LAPACK
00453 return _mat( i );
00454 #else
00455 return _mat[i];
00456 #endif
00457 }
00458
00459 inline double operator()( unsigned i ) const
00460 {
00461 #ifndef MOAB_HAVE_LAPACK
00462 return _mat( i );
00463 #else
00464 return _mat[i];
00465 #endif
00466 }
00467
00468 // get pointer to array of nine doubles
00469 inline double* array()
00470 {
00471 #ifndef MOAB_HAVE_LAPACK
00472 return _mat.data();
00473 #else
00474 return _mat;
00475 #endif
00476 }
00477
00478 inline const double* array() const
00479 {
00480 #ifndef MOAB_HAVE_LAPACK
00481 return _mat.data();
00482 #else
00483 return _mat;
00484 #endif
00485 }
00486
00487 inline Matrix3& operator+=( const Matrix3& m )
00488 {
00489 #ifndef MOAB_HAVE_LAPACK
00490 _mat += m._mat;
00491 #else
00492 for( int i = 0; i < Matrix3::size; ++i )
00493 _mat[i] += m._mat[i];
00494 #endif
00495 return *this;
00496 }
00497
00498 inline Matrix3& operator-=( const Matrix3& m )
00499 {
00500 #ifndef MOAB_HAVE_LAPACK
00501 _mat -= m._mat;
00502 #else
00503 for( int i = 0; i < Matrix3::size; ++i )
00504 _mat[i] -= m._mat[i];
00505 #endif
00506 return *this;
00507 }
00508
00509 inline Matrix3& operator*=( double s )
00510 {
00511 #ifndef MOAB_HAVE_LAPACK
00512 _mat *= s;
00513 #else
00514 for( int i = 0; i < Matrix3::size; ++i )
00515 _mat[i] *= s;
00516 #endif
00517 return *this;
00518 }
00519
00520 inline Matrix3& operator/=( double s )
00521 {
00522 #ifndef MOAB_HAVE_LAPACK
00523 _mat /= s;
00524 #else
00525 for( int i = 0; i < Matrix3::size; ++i )
00526 _mat[i] /= s;
00527 #endif
00528 return *this;
00529 }
00530
00531 inline Matrix3& operator*=( const Matrix3& m )
00532 {
00533 #ifndef MOAB_HAVE_LAPACK
00534 _mat *= m._mat;
00535 #else
00536 // Uncomment below if you want point-wise multiplication instead (.*)
00537 // for (int i=0; i < Matrix3::size; ++i) _mat[i] *= m._mat[i];
00538 std::vector< double > dmat;
00539 dmat.assign( _mat, _mat + size );
00540 _mat[0] = dmat[0] * m._mat[0] + dmat[1] * m._mat[3] + dmat[2] * m._mat[6];
00541 _mat[1] = dmat[0] * m._mat[1] + dmat[1] * m._mat[4] + dmat[2] * m._mat[7];
00542 _mat[2] = dmat[0] * m._mat[2] + dmat[1] * m._mat[5] + dmat[2] * m._mat[8];
00543 _mat[3] = dmat[3] * m._mat[0] + dmat[4] * m._mat[3] + dmat[5] * m._mat[6];
00544 _mat[4] = dmat[3] * m._mat[1] + dmat[4] * m._mat[4] + dmat[5] * m._mat[7];
00545 _mat[5] = dmat[3] * m._mat[2] + dmat[4] * m._mat[5] + dmat[5] * m._mat[8];
00546 _mat[6] = dmat[6] * m._mat[0] + dmat[7] * m._mat[3] + dmat[8] * m._mat[6];
00547 _mat[7] = dmat[6] * m._mat[1] + dmat[7] * m._mat[4] + dmat[8] * m._mat[7];
00548 _mat[8] = dmat[6] * m._mat[2] + dmat[7] * m._mat[5] + dmat[8] * m._mat[8];
00549 #endif
00550 return *this;
00551 }
00552
00553 inline bool is_symmetric()
00554 {
00555 const double EPS = 1e-13;
00556 #ifndef MOAB_HAVE_LAPACK
00557 if( ( fabs( _mat( 1 ) - _mat( 3 ) ) < EPS ) && ( fabs( _mat( 2 ) - _mat( 6 ) ) < EPS ) &&
00558 ( fabs( _mat( 5 ) - _mat( 7 ) ) < EPS ) )
00559 return true;
00560 #else
00561 if( ( fabs( _mat[1] - _mat[3] ) < EPS ) && ( fabs( _mat[2] - _mat[6] ) < EPS ) &&
00562 ( fabs( _mat[5] - _mat[7] ) < EPS ) )
00563 return true;
00564 #endif
00565 else
00566 return false;
00567 }
00568
00569 inline bool is_positive_definite()
00570 {
00571 #ifndef MOAB_HAVE_LAPACK
00572 double subdet6 = _mat( 1 ) * _mat( 5 ) - _mat( 2 ) * _mat( 4 );
00573 double subdet7 = _mat( 2 ) * _mat( 3 ) - _mat( 0 ) * _mat( 5 );
00574 double subdet8 = _mat( 0 ) * _mat( 4 ) - _mat( 1 ) * _mat( 3 );
00575 // Determinant:= d(6)*subdet6 + d(7)*subdet7 + d(8)*subdet8;
00576 const double det = _mat( 6 ) * subdet6 + _mat( 7 ) * subdet7 + _mat( 8 ) * subdet8;
00577 return _mat( 0 ) > 0 && subdet8 > 0 && det > 0;
00578 #else
00579 double subdet6 = _mat[1] * _mat[5] - _mat[2] * _mat[4];
00580 double subdet7 = _mat[2] * _mat[3] - _mat[0] * _mat[5];
00581 double subdet8 = _mat[0] * _mat[4] - _mat[1] * _mat[3];
00582 // Determinant:= d(6)*subdet6 + d(7)*subdet7 + d(8)*subdet8;
00583 const double det = _mat[6] * subdet6 + _mat[7] * subdet7 + _mat[8] * subdet8;
00584 return _mat[0] > 0 && subdet8 > 0 && det > 0;
00585 #endif
00586 }
00587
00588 template < typename Vector >
00589 inline ErrorCode eigen_decomposition( Vector& evals, Matrix3& evecs )
00590 {
00591 const bool bisSymmetric = this->is_symmetric();
00592 #ifndef MOAB_HAVE_LAPACK
00593 if( bisSymmetric )
00594 {
00595 Eigen::SelfAdjointEigenSolver< Eigen::Matrix3d > eigensolver( this->_mat );
00596 if( eigensolver.info() != Eigen::Success ) return MB_FAILURE;
00597 const Eigen::SelfAdjointEigenSolver< Eigen::Matrix3d >::RealVectorType& e3evals = eigensolver.eigenvalues();
00598 evals[0] = e3evals( 0 );
00599 evals[1] = e3evals( 1 );
00600 evals[2] = e3evals( 2 );
00601 evecs._mat = eigensolver.eigenvectors(); //.col(1)
00602 return MB_SUCCESS;
00603 }
00604 else
00605 {
00606 MB_CHK_SET_ERR( MB_FAILURE, "Unsymmetric matrix implementation with Eigen3 is currently not provided." );
00607 // Eigen::EigenSolver eigensolver(this->_mat, true);
00608 // if (eigensolver.info() != Eigen::Success)
00609 // return MB_FAILURE;
00610 // const Eigen::EigenSolver::EigenvalueType& e3evals =
00611 // eigensolver.eigenvalues().real(); evals[0] = e3evals(0); evals[1] = e3evals(1);
00612 // evals[2] = e3evals(2); evecs._mat = eigensolver.eigenvectors().real(); //.col(1)
00613 // return MB_SUCCESS;
00614 }
00615 #else
00616 int info;
00617 /* Solve eigenproblem */
00618 double devreal[3], drevecs[9];
00619 if( !bisSymmetric )
00620 {
00621 double devimag[3], dlevecs[9], dwork[102];
00622 char dgeev_opts[2] = { 'N', 'V' };
00623 int N = 3, LWORK = 102, NL = 1, NR = N;
00624 std::vector< double > devmat;
00625 devmat.assign( _mat, _mat + size );
00626 MOAB_dgeev( &dgeev_opts[0], &dgeev_opts[1], &N, &devmat[0], &N, devreal, devimag, dlevecs, &NL, drevecs,
00627 &NR, dwork, &LWORK, &info );
00628 // The result eigenvalues are ordered as high-->low
00629 evals[0] = devreal[2];
00630 evals[1] = devreal[1];
00631 evals[2] = devreal[0];
00632 evecs._mat[0] = drevecs[6];
00633 evecs._mat[1] = drevecs[3];
00634 evecs._mat[2] = drevecs[0];
00635 evecs._mat[3] = drevecs[7];
00636 evecs._mat[4] = drevecs[4];
00637 evecs._mat[5] = drevecs[1];
00638 evecs._mat[6] = drevecs[8];
00639 evecs._mat[7] = drevecs[5];
00640 evecs._mat[8] = drevecs[2];
00641 std::cout << "DGEEV: Optimal work vector: dsize = " << dwork[0] << ".\n";
00642 }
00643 else
00644 {
00645 char dgeev_opts[2] = { 'V', 'L' };
00646 const bool find_optimal = false;
00647 std::vector< int > iwork( 18 );
00648 std::vector< double > devmat( 9, 0.0 );
00649 std::vector< double > dwork( 38 );
00650 int N = 3, lwork = 38, liwork = 18;
00651 devmat[0] = _mat[0];
00652 devmat[1] = _mat[1];
00653 devmat[2] = _mat[2];
00654 devmat[4] = _mat[4];
00655 devmat[5] = _mat[5];
00656 devmat[8] = _mat[8];
00657 if( find_optimal )
00658 {
00659 int _lwork = -1;
00660 int _liwork = -1;
00661 double query_work_size = 0;
00662 int query_iwork_size = 0;
00663 // Make an empty call to find the optimal work vector size
00664 MOAB_dsyevd( &dgeev_opts[0], &dgeev_opts[1], &N, NULL, &N, NULL, &query_work_size, &_lwork,
00665 &query_iwork_size, &_liwork, &info );
00666 lwork = (int)query_work_size;
00667 dwork.resize( lwork );
00668 liwork = query_iwork_size;
00669 iwork.resize( liwork );
00670 std::cout << "DSYEVD: Optimal work vector: dsize = " << lwork << ", and isize = " << liwork << ".\n";
00671 }
00672
00673 MOAB_dsyevd( &dgeev_opts[0], &dgeev_opts[1], &N, &devmat[0], &N, devreal, &dwork[0], &lwork, &iwork[0],
00674 &liwork, &info );
00675 for( int i = 0; i < 9; ++i )
00676 drevecs[i] = devmat[i];
00677 // The result eigenvalues are ordered as low-->high, but vectors are in rows of A.
00678 evals[0] = devreal[0];
00679 evals[1] = devreal[1];
00680 evals[2] = devreal[2];
00681 evecs._mat[0] = drevecs[0];
00682 evecs._mat[3] = drevecs[1];
00683 evecs._mat[6] = drevecs[2];
00684 evecs._mat[1] = drevecs[3];
00685 evecs._mat[4] = drevecs[4];
00686 evecs._mat[7] = drevecs[5];
00687 evecs._mat[2] = drevecs[6];
00688 evecs._mat[5] = drevecs[7];
00689 evecs._mat[8] = drevecs[8];
00690 }
00691
00692 if( !info )
00693 {
00694 return MB_SUCCESS;
00695 }
00696 else
00697 {
00698 std::cout << "Failure in LAPACK_" << ( bisSymmetric ? "DSYEVD" : "DGEEV" )
00699 << " call for eigen decomposition.\n";
00700 std::cout << "Failed with error = " << info << ".\n";
00701 return MB_FAILURE;
00702 }
00703 #endif
00704 }
00705
00706 inline void transpose_inplace()
00707 {
00708 #ifndef MOAB_HAVE_LAPACK
00709 _mat.transposeInPlace();
00710 #else
00711 Matrix3 mtmp( *this );
00712 _mat[1] = mtmp._mat[3];
00713 _mat[3] = mtmp._mat[1];
00714 _mat[2] = mtmp._mat[6];
00715 _mat[6] = mtmp._mat[2];
00716 _mat[5] = mtmp._mat[7];
00717 _mat[7] = mtmp._mat[5];
00718 #endif
00719 }
00720
00721 inline Matrix3 transpose() const
00722 {
00723 #ifndef MOAB_HAVE_LAPACK
00724 return Matrix3( _mat.transpose() );
00725 #else
00726 Matrix3 mtmp( *this );
00727 mtmp._mat[1] = _mat[3];
00728 mtmp._mat[3] = _mat[1];
00729 mtmp._mat[2] = _mat[6];
00730 mtmp._mat[6] = _mat[2];
00731 mtmp._mat[5] = _mat[7];
00732 mtmp._mat[7] = _mat[5];
00733 return mtmp;
00734 #endif
00735 }
00736
00737 template < typename Vector >
00738 inline void copycol( int index, Vector& vol )
00739 {
00740 #ifndef MOAB_HAVE_LAPACK
00741 _mat.col( index ).swap( vol );
00742 #else
00743 switch( index )
00744 {
00745 case 0:
00746 _mat[0] = vol[0];
00747 _mat[3] = vol[1];
00748 _mat[6] = vol[2];
00749 break;
00750 case 1:
00751 _mat[1] = vol[0];
00752 _mat[4] = vol[1];
00753 _mat[7] = vol[2];
00754 break;
00755 case 2:
00756 _mat[2] = vol[0];
00757 _mat[5] = vol[1];
00758 _mat[8] = vol[2];
00759 break;
00760 }
00761 #endif
00762 }
00763
00764 inline void swapcol( int srcindex, int destindex )
00765 {
00766 assert( srcindex < Matrix3::size );
00767 assert( destindex < Matrix3::size );
00768 #ifndef MOAB_HAVE_LAPACK
00769 _mat.col( srcindex ).swap( _mat.col( destindex ) );
00770 #else
00771 CartVect svol = this->vcol< CartVect >( srcindex );
00772 CartVect dvol = this->vcol< CartVect >( destindex );
00773 switch( srcindex )
00774 {
00775 case 0:
00776 _mat[0] = dvol[0];
00777 _mat[3] = dvol[1];
00778 _mat[6] = dvol[2];
00779 break;
00780 case 1:
00781 _mat[1] = dvol[0];
00782 _mat[4] = dvol[1];
00783 _mat[7] = dvol[2];
00784 break;
00785 case 2:
00786 _mat[2] = dvol[0];
00787 _mat[5] = dvol[1];
00788 _mat[8] = dvol[2];
00789 break;
00790 }
00791 switch( destindex )
00792 {
00793 case 0:
00794 _mat[0] = svol[0];
00795 _mat[3] = svol[1];
00796 _mat[6] = svol[2];
00797 break;
00798 case 1:
00799 _mat[1] = svol[0];
00800 _mat[4] = svol[1];
00801 _mat[7] = svol[2];
00802 break;
00803 case 2:
00804 _mat[2] = svol[0];
00805 _mat[5] = svol[1];
00806 _mat[8] = svol[2];
00807 break;
00808 }
00809 #endif
00810 }
00811
00812 template < typename Vector >
00813 inline Vector vcol( int index ) const
00814 {
00815 assert( index < Matrix3::size );
00816 #ifndef MOAB_HAVE_LAPACK
00817 return _mat.col( index );
00818 #else
00819 switch( index )
00820 {
00821 case 0:
00822 return Vector( _mat[0], _mat[3], _mat[6] );
00823 case 1:
00824 return Vector( _mat[1], _mat[4], _mat[7] );
00825 case 2:
00826 return Vector( _mat[2], _mat[5], _mat[8] );
00827 }
00828 return Vector( 0.0 );
00829 #endif
00830 }
00831
00832 inline void colscale( int index, double scale )
00833 {
00834 assert( index < Matrix3::size );
00835 #ifndef MOAB_HAVE_LAPACK
00836 _mat.col( index ) *= scale;
00837 #else
00838 switch( index )
00839 {
00840 case 0:
00841 _mat[0] *= scale;
00842 _mat[3] *= scale;
00843 _mat[6] *= scale;
00844 break;
00845 case 1:
00846 _mat[1] *= scale;
00847 _mat[4] *= scale;
00848 _mat[7] *= scale;
00849 break;
00850 case 2:
00851 _mat[2] *= scale;
00852 _mat[5] *= scale;
00853 _mat[8] *= scale;
00854 break;
00855 }
00856 #endif
00857 }
00858
00859 inline void rowscale( int index, double scale )
00860 {
00861 assert( index < Matrix3::size );
00862 #ifndef MOAB_HAVE_LAPACK
00863 _mat.row( index ) *= scale;
00864 #else
00865 switch( index )
00866 {
00867 case 0:
00868 _mat[0] *= scale;
00869 _mat[1] *= scale;
00870 _mat[2] *= scale;
00871 break;
00872 case 1:
00873 _mat[3] *= scale;
00874 _mat[4] *= scale;
00875 _mat[5] *= scale;
00876 break;
00877 case 2:
00878 _mat[6] *= scale;
00879 _mat[7] *= scale;
00880 _mat[8] *= scale;
00881 break;
00882 }
00883 #endif
00884 }
00885
00886 inline CartVect col( int index ) const
00887 {
00888 assert( index < Matrix3::size );
00889 #ifndef MOAB_HAVE_LAPACK
00890 Eigen::Vector3d mvec = _mat.col( index );
00891 return CartVect( mvec[0], mvec[1], mvec[2] );
00892 #else
00893 switch( index )
00894 {
00895 case 0:
00896 return CartVect( _mat[0], _mat[3], _mat[6] );
00897 case 1:
00898 return CartVect( _mat[1], _mat[4], _mat[7] );
00899 case 2:
00900 return CartVect( _mat[2], _mat[5], _mat[8] );
00901 }
00902 return CartVect( 0.0 );
00903 #endif
00904 }
00905
00906 inline CartVect row( int index ) const
00907 {
00908 assert( index < Matrix3::size );
00909 #ifndef MOAB_HAVE_LAPACK
00910 Eigen::Vector3d mvec = _mat.row( index );
00911 return CartVect( mvec[0], mvec[1], mvec[2] );
00912 #else
00913 switch( index )
00914 {
00915 case 0:
00916 return CartVect( _mat[0], _mat[1], _mat[2] );
00917 case 1:
00918 return CartVect( _mat[3], _mat[4], _mat[5] );
00919 case 2:
00920 return CartVect( _mat[6], _mat[7], _mat[8] );
00921 }
00922 return CartVect( 0.0 );
00923 #endif
00924 }
00925
00926 friend Matrix3 operator+( const Matrix3& a, const Matrix3& b );
00927 friend Matrix3 operator-( const Matrix3& a, const Matrix3& b );
00928 friend Matrix3 operator*( const Matrix3& a, const Matrix3& b );
00929
00930 inline double determinant() const
00931 {
00932 #ifndef MOAB_HAVE_LAPACK
00933 return _mat.determinant();
00934 #else
00935 return ( _mat[0] * _mat[4] * _mat[8] + _mat[1] * _mat[5] * _mat[6] + _mat[2] * _mat[3] * _mat[7] -
00936 _mat[0] * _mat[5] * _mat[7] - _mat[1] * _mat[3] * _mat[8] - _mat[2] * _mat[4] * _mat[6] );
00937 #endif
00938 }
00939
00940 inline Matrix3 inverse() const
00941 {
00942 #ifndef MOAB_HAVE_LAPACK
00943 return Matrix3( _mat.inverse() );
00944 #else
00945 // return Matrix::compute_inverse( *this, this->determinant() );
00946 Matrix3 m( 0.0 );
00947 const double d_determinant = 1.0 / this->determinant();
00948 m._mat[0] = d_determinant * ( _mat[4] * _mat[8] - _mat[5] * _mat[7] );
00949 m._mat[1] = d_determinant * ( _mat[2] * _mat[7] - _mat[8] * _mat[1] );
00950 m._mat[2] = d_determinant * ( _mat[1] * _mat[5] - _mat[4] * _mat[2] );
00951 m._mat[3] = d_determinant * ( _mat[5] * _mat[6] - _mat[8] * _mat[3] );
00952 m._mat[4] = d_determinant * ( _mat[0] * _mat[8] - _mat[6] * _mat[2] );
00953 m._mat[5] = d_determinant * ( _mat[2] * _mat[3] - _mat[5] * _mat[0] );
00954 m._mat[6] = d_determinant * ( _mat[3] * _mat[7] - _mat[6] * _mat[4] );
00955 m._mat[7] = d_determinant * ( _mat[1] * _mat[6] - _mat[7] * _mat[0] );
00956 m._mat[8] = d_determinant * ( _mat[0] * _mat[4] - _mat[3] * _mat[1] );
00957 return m;
00958 #endif
00959 }
00960
00961 inline bool invert()
00962 {
00963 bool invertible = false;
00964 double d_determinant;
00965 #ifndef MOAB_HAVE_LAPACK
00966 Eigen::Matrix3d invMat;
00967 _mat.computeInverseAndDetWithCheck( invMat, d_determinant, invertible );
00968 if( !Util::is_finite( d_determinant ) ) return false;
00969 _mat = invMat;
00970 return invertible;
00971 #else
00972 d_determinant = this->determinant();
00973 if( d_determinant > 1e-13 ) invertible = true;
00974 d_determinant = 1.0 / d_determinant; // invert the determinant
00975 std::vector< double > _m;
00976 _m.assign( _mat, _mat + size );
00977 _mat[0] = d_determinant * ( _m[4] * _m[8] - _m[5] * _m[7] );
00978 _mat[1] = d_determinant * ( _m[2] * _m[7] - _m[8] * _m[1] );
00979 _mat[2] = d_determinant * ( _m[1] * _m[5] - _m[4] * _m[2] );
00980 _mat[3] = d_determinant * ( _m[5] * _m[6] - _m[8] * _m[3] );
00981 _mat[4] = d_determinant * ( _m[0] * _m[8] - _m[6] * _m[2] );
00982 _mat[5] = d_determinant * ( _m[2] * _m[3] - _m[5] * _m[0] );
00983 _mat[6] = d_determinant * ( _m[3] * _m[7] - _m[6] * _m[4] );
00984 _mat[7] = d_determinant * ( _m[1] * _m[6] - _m[7] * _m[0] );
00985 _mat[8] = d_determinant * ( _m[0] * _m[4] - _m[3] * _m[1] );
00986 #endif
00987 return invertible;
00988 }
00989
00990 // Calculate determinant of 2x2 submatrix composed of the
00991 // elements not in the passed row or column.
00992 inline double subdet( int r, int c ) const
00993 {
00994 assert( r >= 0 && c >= 0 );
00995 if( r < 0 || c < 0 ) return DBL_MAX;
00996 #ifndef MOAB_HAVE_LAPACK
00997 const int r1 = ( r + 1 ) % 3, r2 = ( r + 2 ) % 3;
00998 const int c1 = ( c + 1 ) % 3, c2 = ( c + 2 ) % 3;
00999 return _mat( r1, c1 ) * _mat( r2, c2 ) - _mat( r1, c2 ) * _mat( r2, c1 );
01000 #else
01001 const int r1 = Matrix3::size * ( ( r + 1 ) % 3 ), r2 = Matrix3::size * ( ( r + 2 ) % 3 );
01002 const int c1 = ( c + 1 ) % 3, c2 = ( c + 2 ) % 3;
01003 return _mat[r1 + c1] * _mat[r2 + c2] - _mat[r1 + c2] * _mat[r2 + c1];
01004 #endif
01005 }
01006
01007 inline void print( std::ostream& s ) const
01008 {
01009 #ifndef MOAB_HAVE_LAPACK
01010 s << "| " << _mat( 0 ) << " " << _mat( 1 ) << " " << _mat( 2 ) << " | " << _mat( 3 ) << " " << _mat( 4 ) << " "
01011 << _mat( 5 ) << " | " << _mat( 6 ) << " " << _mat( 7 ) << " " << _mat( 8 ) << " |";
01012 #else
01013 s << "| " << _mat[0] << " " << _mat[1] << " " << _mat[2] << " | " << _mat[3] << " " << _mat[4] << " " << _mat[5]
01014 << " | " << _mat[6] << " " << _mat[7] << " " << _mat[8] << " |";
01015 #endif
01016 }
01017
01018 }; // class Matrix3
01019
01020 template < typename Vector >
01021 inline Matrix3 outer_product( const Vector& u, const Vector& v )
01022 {
01023 return Matrix3( u[0] * v[0], u[0] * v[1], u[0] * v[2], u[1] * v[0], u[1] * v[1], u[1] * v[2], u[2] * v[0],
01024 u[2] * v[1], u[2] * v[2] );
01025 }
01026
01027 inline Matrix3 operator+( const Matrix3& a, const Matrix3& b )
01028 {
01029 #ifndef MOAB_HAVE_LAPACK
01030 return Matrix3( a._mat + b._mat );
01031 #else
01032 Matrix3 s( a );
01033 for( int i = 0; i < Matrix3::size; ++i )
01034 s( i ) += b._mat[i];
01035 return s;
01036 #endif
01037 }
01038
01039 inline Matrix3 operator-( const Matrix3& a, const Matrix3& b )
01040 {
01041 #ifndef MOAB_HAVE_LAPACK
01042 return Matrix3( a._mat - b._mat );
01043 #else
01044 Matrix3 s( a );
01045 for( int i = 0; i < Matrix3::size; ++i )
01046 s( i ) -= b._mat[i];
01047 return s;
01048 #endif
01049 }
01050
01051 inline Matrix3 operator*( const Matrix3& a, const Matrix3& b )
01052 {
01053 #ifndef MOAB_HAVE_LAPACK
01054 return Matrix3( a._mat * b._mat );
01055 #else
01056 return Matrix::mmult3( a, b );
01057 #endif
01058 }
01059
01060 template < typename T >
01061 inline std::vector< T > operator*( const Matrix3& m, const std::vector< T >& v )
01062 {
01063 return moab::Matrix::matrix_vector( m, v );
01064 }
01065
01066 template < typename T >
01067 inline std::vector< T > operator*( const std::vector< T >& v, const Matrix3& m )
01068 {
01069 return moab::Matrix::vector_matrix( v, m );
01070 }
01071
01072 inline CartVect operator*( const Matrix3& m, const CartVect& v )
01073 {
01074 return moab::Matrix::matrix_vector( m, v );
01075 }
01076
01077 inline CartVect operator*( const CartVect& v, const Matrix3& m )
01078 {
01079 return moab::Matrix::vector_matrix( v, m );
01080 }
01081
01082 } // namespace moab
01083
01084 #ifdef MOAB_HAVE_LAPACK
01085 #undef MOAB_DMEMZERO
01086 #endif
01087
01088 #ifndef MOAB_MATRIX3_OPERATORLESS
01089 #define MOAB_MATRIX3_OPERATORLESS
01090 inline std::ostream& operator<<( std::ostream& s, const moab::Matrix3& m )
01091 {
01092 return s << "| " << m( 0, 0 ) << " " << m( 0, 1 ) << " " << m( 0, 2 ) << " | " << m( 1, 0 ) << " " << m( 1, 1 )
01093 << " " << m( 1, 2 ) << " | " << m( 2, 0 ) << " " << m( 2, 1 ) << " " << m( 2, 2 ) << " |";
01094 }
01095 #endif // MOAB_MATRIX3_OPERATORLESS
01096 #endif // MOAB_MATRIX3_HPP