![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /*
00002 * SmoothCurve.cpp
00003 *
00004 */
00005
00006 #include "SmoothCurve.hpp"
00007 //#include "SmoothVertex.hpp"
00008 #include "SmoothFace.hpp"
00009 #include
00010 #include
00011 #include "moab/GeomTopoTool.hpp"
00012
00013 namespace moab
00014 {
00015
00016 SmoothCurve::SmoothCurve( Interface* mb, EntityHandle curve, GeomTopoTool* gTool )
00017 : _mb( mb ), _set( curve ), _gtt( gTool )
00018 {
00019 //_mbOut->create_meshset(MESHSET_ORDERED, _oSet);
00020 /*_cmlEdgeMesher = new CMLEdgeMesher (this, CML::STANDARD);
00021 _cmlEdgeMesher->set_sizing_function(CML::LINEAR_SIZING);*/
00022 _leng = 0; // not initialized
00023 _edgeTag = 0; // not initialized
00024 }
00025 SmoothCurve::~SmoothCurve()
00026 {
00027 // TODO Auto-generated destructor stub
00028 }
00029
00030 double SmoothCurve::arc_length()
00031 {
00032
00033 return _leng;
00034 }
00035
00036 //! \brief Get the parametric status of the curve.
00037 //!
00038 //! \return \a true if curve is parametric, \a false otherwise.
00039 bool SmoothCurve::is_parametric()
00040 {
00041 return true;
00042 }
00043
00044 //! \brief Get the periodic status of the curve.
00045 //!
00046 //! \param period The period of the curve if periodic.
00047 //!
00048 //! \return \a true if curve is periodic, \a false otherwise.
00049 bool SmoothCurve::is_periodic( double& period )
00050 {
00051 // assert(_ref_edge);
00052 // return _ref_edge->is_periodic( period);
00053 Range vsets;
00054 _mb->get_child_meshsets( _set, vsets ); // num_hops =1
00055 if( vsets.size() == 1 )
00056 {
00057 period = _leng;
00058 return true; // true , especially for ice sheet data
00059 }
00060 return false;
00061 }
00062
00063 //! \brief Get the parameter range of the curve.
00064 //!
00065 //! \param u_start The beginning curve parameter
00066 //! \param u_end The ending curve parameter
00067 //!
00068 //! \note The numerical value of \a u_start may be greater
00069 //! than the numerical value of \a u_end.
00070 void SmoothCurve::get_param_range( double& u_start, double& u_end )
00071 {
00072 // assert(_ref_edge);
00073 u_start = 0;
00074 u_end = 1.;
00075
00076 return;
00077 }
00078
00079 //! Compute the parameter value at a specified distance along the curve.
00080 //!
00081 //! \param u_root The start parameter from which to compute the distance
00082 //! along the curve.
00083 //! \param arc_length The distance to move along the curve.
00084 //!
00085 //! \note For positive values of \a arc_length the distance will be
00086 //! computed in the direction of increasing parameter value along the
00087 //! curve. For negative values of \a arc_length the distance will be
00088 //! computed in the direction of decreasing parameter value along the
00089 //! curve.
00090 //!
00091 //! \return The parametric coordinate u along the curve
00092 double SmoothCurve::u_from_arc_length( double u_root, double arc_leng )
00093 {
00094
00095 if( _leng <= 0 ) return 0;
00096 return u_root + arc_leng / _leng;
00097 }
00098
00099 //! \brief Evaluate the curve at a specified parameter value.
00100 //!
00101 //! \param u The parameter at which to evaluate the curve
00102 //! \param x The x coordinate of the evaluated point
00103 //! \param y The y coordinate of the evaluated point
00104 //! \param z The z coordinate of the evaluated point
00105 bool SmoothCurve::position_from_u( double u, double& x, double& y, double& z, double* tg )
00106 {
00107
00108 // _fractions are increasing, so find the
00109 double* ptr = std::lower_bound( &_fractions[0], ( &_fractions[0] ) + _fractions.size(), u );
00110 int index = ptr - &_fractions[0];
00111 double nextFraction = _fractions[index];
00112 double prevFraction = 0;
00113 if( index > 0 )
00114 {
00115 prevFraction = _fractions[index - 1];
00116 }
00117 double t = ( u - prevFraction ) / ( nextFraction - prevFraction );
00118
00119 EntityHandle edge = _entities[index];
00120
00121 CartVect position, tangent;
00122 ErrorCode rval = evaluate_smooth_edge( edge, t, position, tangent );
00123 if( MB_SUCCESS != rval ) return false;
00124 assert( rval == MB_SUCCESS );
00125 x = position[0];
00126 y = position[1];
00127 z = position[2];
00128 if( tg )
00129 {
00130 // we need to do some scaling,
00131 double dtdu = 1 / ( nextFraction - prevFraction );
00132 tg[0] = tangent[0] * dtdu;
00133 tg[1] = tangent[1] * dtdu;
00134 tg[2] = tangent[2] * dtdu;
00135 }
00136
00137 return true;
00138 }
00139 //! \brief Move a point near the curve to the closest point on the curve.
00140 //!
00141 //! \param x The x coordinate of the point
00142 //! \param y The y coordinate of the point
00143 //! \param z The z coordinate of the point
00144 void SmoothCurve::move_to_curve( double& x, double& y, double& z )
00145 {
00146
00147 // find closest point to the curve, and the parametric position
00148 // must be close by, but how close ???
00149 EntityHandle v;
00150 int edgeIndex;
00151 double u = u_from_position( x, y, z, v, edgeIndex );
00152 position_from_u( u, x, y, z );
00153
00154 return;
00155 }
00156
00157 //! Get the u parameter value on the curve closest to x,y,z
00158 //! and the point on the curve.
00159 //!
00160 //! \param x The x coordinate of the point
00161 //! \param y The y coordinate of the point
00162 //! \param z The z coordinate of the point
00163 //!
00164 //! \return The parametric coordinate u on the curve
00165 double SmoothCurve::u_from_position( double x, double y, double z, EntityHandle& v, int& edgeIndex )
00166 {
00167 // this is an iterative process, expensive usually
00168 // get first all nodes , and their positions
00169 // find the closest node (and edge), and from there do some
00170 // iterations up to a point
00171 // do not exaggerate with convergence criteria
00172
00173 v = 0; // we do not have a close by vertex yet
00174 CartVect initialPos( x, y, z );
00175 double u = 0;
00176 int nbNodes = (int)_entities.size() * 2; // the mesh edges are stored
00177 std::vector< EntityHandle > nodesConnec;
00178 nodesConnec.resize( nbNodes );
00179 ErrorCode rval = this->_mb->get_connectivity( &( _entities[0] ), nbNodes / 2, nodesConnec );
00180 if( MB_SUCCESS != rval )
00181 {
00182 std::cout << "error in getting connectivity\n";
00183 return 0;
00184 }
00185 // collapse nodesConnec, nodes should be in order
00186 for( int k = 0; k < nbNodes / 2; k++ )
00187 {
00188 nodesConnec[k + 1] = nodesConnec[2 * k + 1];
00189 }
00190 int numNodes = nbNodes / 2 + 1;
00191 std::vector< CartVect > coordNodes;
00192 coordNodes.resize( numNodes );
00193
00194 rval = _mb->get_coords( &( nodesConnec[0] ), numNodes, (double*)&( coordNodes[0] ) );
00195 if( MB_SUCCESS != rval )
00196 {
00197 std::cout << "error in getting node positions\n";
00198 return 0;
00199 }
00200 // find the closest node, then find the closest edge, based on closest node
00201
00202 int indexNode = 0;
00203 double minDist = 1.e30;
00204 // expensive linear search
00205 for( int i = 0; i < numNodes; i++ )
00206 {
00207 double d1 = ( initialPos - coordNodes[i] ).length();
00208 if( d1 < minDist )
00209 {
00210 indexNode = i;
00211 minDist = d1;
00212 }
00213 }
00214 double tolerance = 0.00001; // what is the unit?
00215 // something reasonable
00216 if( minDist < tolerance )
00217 {
00218 v = nodesConnec[indexNode];
00219 // we are done, just return the proper u (from fractions)
00220 if( indexNode == 0 )
00221 {
00222 return 0; // first node has u = 0
00223 }
00224 else
00225 return _fractions[indexNode - 1]; // fractions[0] > 0!!)
00226 }
00227 // find the mesh edge; could be previous or next edge
00228 edgeIndex = indexNode; // could be the previous one, though!!
00229 if( edgeIndex == numNodes - 1 )
00230 edgeIndex--; // we have one less edge, and do not worry about next edge
00231 else
00232 {
00233 if( edgeIndex > 0 )
00234 {
00235 // could be the previous; decide based on distance to the other
00236 // nodes of the 2 connected edges
00237 CartVect prevNodePos = coordNodes[edgeIndex - 1];
00238 CartVect nextNodePos = coordNodes[edgeIndex + 1];
00239 if( ( prevNodePos - initialPos ).length_squared() < ( nextNodePos - initialPos ).length_squared() )
00240 {
00241 edgeIndex--;
00242 }
00243 }
00244 }
00245 // now, we know for sure that the closest point is somewhere on edgeIndex edge
00246 //
00247
00248 // do newton iteration for local t between 0 and 1
00249
00250 // copy from evaluation method
00251 CartVect P[2]; // P0 and P1
00252 CartVect controlPoints[3]; // edge control points
00253 double t4, t3, t2, one_minus_t, one_minus_t2, one_minus_t3, one_minus_t4;
00254
00255 P[0] = coordNodes[edgeIndex];
00256 P[1] = coordNodes[edgeIndex + 1];
00257
00258 if( 0 == _edgeTag )
00259 {
00260 rval = _mb->tag_get_handle( "CONTROLEDGE", 9, MB_TYPE_DOUBLE, _edgeTag );
00261 if( rval != MB_SUCCESS ) return 0;
00262 }
00263 rval = _mb->tag_get_data( _edgeTag, &( _entities[edgeIndex] ), 1, (double*)&controlPoints[0] );
00264 if( rval != MB_SUCCESS ) return rval;
00265
00266 // starting point
00267 double tt = 0.5; // between the 2 ends of the edge
00268 int iterations = 0;
00269 // find iteratively a better point
00270 int maxIterations = 10; // not too many
00271 CartVect outv;
00272 // we will solve minimize F = 0.5 * ( ini - r(t) )^2
00273 // so solve F'(t) = 0
00274 // Iteration: t_ -> t - F'(t)/F"(t)
00275 // F'(t) = r'(t) (ini-r(t) )
00276 // F"(t) = r"(t) (ini-r(t) ) - (r'(t))^2
00277 while( iterations < maxIterations )
00278 //
00279 {
00280 t2 = tt * tt;
00281 t3 = t2 * tt;
00282 t4 = t3 * tt;
00283 one_minus_t = 1. - tt;
00284 one_minus_t2 = one_minus_t * one_minus_t;
00285 one_minus_t3 = one_minus_t2 * one_minus_t;
00286 one_minus_t4 = one_minus_t3 * one_minus_t;
00287
00288 outv = one_minus_t4 * P[0] + 4. * one_minus_t3 * tt * controlPoints[0] +
00289 6. * one_minus_t2 * t2 * controlPoints[1] + 4. * one_minus_t * t3 * controlPoints[2] + t4 * P[1];
00290
00291 CartVect out_tangent = -4. * one_minus_t3 * P[0] +
00292 4. * ( one_minus_t3 - 3. * tt * one_minus_t2 ) * controlPoints[0] +
00293 12. * ( tt * one_minus_t2 - t2 * one_minus_t ) * controlPoints[1] +
00294 4. * ( 3. * t2 * one_minus_t - t3 ) * controlPoints[2] + 4. * t3 * P[1];
00295
00296 CartVect second_deriv =
00297 12. * one_minus_t2 * P[0] +
00298 4. * ( -3. * one_minus_t2 - 3. * one_minus_t2 + 6. * tt * one_minus_t ) * controlPoints[0] +
00299 12. * ( one_minus_t2 - 4 * tt * one_minus_t + t2 ) * controlPoints[1] +
00300 4. * ( 6. * tt - 12 * t2 ) * controlPoints[2] + 12. * t2 * P[1];
00301 CartVect diff = outv - initialPos;
00302 double F_d = out_tangent % diff;
00303 double F_dd = second_deriv % diff + out_tangent.length_squared();
00304
00305 if( 0 == F_dd ) break; // get out, we found minimum?
00306
00307 double delta_t = -F_d / F_dd;
00308
00309 if( fabs( delta_t ) < 0.000001 ) break;
00310 tt = tt + delta_t;
00311 if( tt < 0 )
00312 {
00313 tt = 0.;
00314 v = nodesConnec[edgeIndex]; // we are at end of mesh edge
00315 break;
00316 }
00317 if( tt > 1 )
00318 {
00319 tt = 1;
00320 v = nodesConnec[edgeIndex + 1]; // we are at one end
00321 break;
00322 }
00323 iterations++;
00324 }
00325 // so we have t on the segment, convert to u, which should
00326 // be between _fractions[edgeIndex] numbers
00327 double prevFraction = 0;
00328 if( edgeIndex > 0 ) prevFraction = _fractions[edgeIndex - 1];
00329
00330 u = prevFraction + tt * ( _fractions[edgeIndex] - prevFraction );
00331 return u;
00332 }
00333
00334 //! \brief Get the starting point of the curve.
00335 //!
00336 //! \param x The x coordinate of the start point
00337 //! \param y The y coordinate of the start point
00338 //! \param z The z coordinate of the start point
00339 void SmoothCurve::start_coordinates( double& x, double& y, double& z )
00340 {
00341
00342 int nnodes = 0;
00343 const EntityHandle* conn2 = NULL;
00344 _mb->get_connectivity( _entities[0], conn2, nnodes );
00345 double c[3];
00346 _mb->get_coords( conn2, 1, c );
00347
00348 x = c[0];
00349 y = c[1];
00350 z = c[2];
00351
00352 return;
00353 }
00354
00355 //! \brief Get the ending point of the curve.
00356 //!
00357 //! \param x The x coordinate of the start point
00358 //! \param y The y coordinate of the start point
00359 //! \param z The z coordinate of the start point
00360 void SmoothCurve::end_coordinates( double& x, double& y, double& z )
00361 {
00362
00363 int nnodes = 0;
00364 const EntityHandle* conn2 = NULL;
00365 _mb->get_connectivity( _entities[_entities.size() - 1], conn2, nnodes );
00366 double c[3];
00367 // careful, the second node here
00368 _mb->get_coords( &conn2[1], 1, c );
00369
00370 x = c[0];
00371 y = c[1];
00372 z = c[2];
00373 return;
00374 }
00375
00376 // this will recompute the 2 tangents for each edge, considering the geo edge they are into
00377 void SmoothCurve::compute_tangents_for_each_edge()
00378 {
00379 // will retrieve the edges in each set; they are retrieved in order they were put into, because
00380 // these sets are "MESHSET_ORDERED"
00381 // retrieve the tag handle for the tangents; it should have been created already
00382 // this tangents are computed for the chain of edges that form a geometric edge
00383 // some checks should be performed on the vertices, but we trust the correctness of the model
00384 // completely (like the vertices should match in the chain...)
00385 Tag tangentsTag;
00386 ErrorCode rval = _mb->tag_get_handle( "TANGENTS", 6, MB_TYPE_DOUBLE, tangentsTag );
00387 if( rval != MB_SUCCESS ) return; // some error should be thrown
00388 std::vector< EntityHandle > entities;
00389 _mb->get_entities_by_type( _set, MBEDGE, entities ); // no recursion!!
00390 // basically, each tangent at a node will depend on previous tangent
00391 int nbEdges = entities.size();
00392 // now, we can advance in the loop
00393 // the only special problem is if the first node coincides with the last node, then we should
00394 // consider the closed loop; or maybe we should look at angles in that case too?
00395 // also, should we look at the 2 semi-circles case? How to decide if we need to continue the
00396 // "tangents" maybe we can do that later, and we can alter the tangents at the feature nodes, in
00397 // the directions of the loops again, do we need to decide the "closed" loop or not? Not yet...
00398 EntityHandle previousEdge = entities[0]; // this is the first edge in the chain
00399 CartVect TP[2]; // tangents for the previous edge
00400 rval = _mb->tag_get_data( tangentsTag, &previousEdge, 1, &TP[0] ); // tangents for previous edge
00401 if( rval != MB_SUCCESS ) return; // some error should be thrown
00402 CartVect TC[2]; // tangents for the current edge
00403 EntityHandle currentEdge;
00404 for( int i = 1; i < nbEdges; i++ )
00405 {
00406 // current edge will start after first one
00407 currentEdge = entities[i];
00408 rval = _mb->tag_get_data( tangentsTag, ¤tEdge, 1, &TC[0] ); //
00409 if( rval != MB_SUCCESS ) return; // some error should be thrown
00410 // now compute the new tangent at common vertex; reset tangents for previous edge and
00411 // current edge a little bit of CPU and memory waste, but this is life
00412 CartVect T = 0.5 * TC[0] + 0.5 * TP[1]; //
00413 T.normalize();
00414 TP[1] = T;
00415 rval = _mb->tag_set_data( tangentsTag, &previousEdge, 1, &TP[0] ); //
00416 if( rval != MB_SUCCESS ) return; // some error should be thrown
00417 TC[0] = T;
00418 rval = _mb->tag_set_data( tangentsTag, ¤tEdge, 1, &TC[0] ); //
00419 if( rval != MB_SUCCESS ) return; // some error should be thrown
00420 // now set the next edge
00421 previousEdge = currentEdge;
00422 TP[0] = TC[0];
00423 TP[1] = TC[1];
00424 }
00425 return;
00426 }
00427
00428 void SmoothCurve::compute_control_points_on_boundary_edges( double,
00429 std::map< EntityHandle, SmoothFace* >& mapSurfaces,
00430 Tag controlPointsTag,
00431 Tag markTag )
00432 {
00433 // these points really need the surfaces they belong to, because the control points on edges
00434 // depend on the normals on surfaces
00435 // the control points are averaged from different surfaces, by simple mean average
00436 // the surfaces have
00437 // do we really need min_dot here?
00438 // first of all, find out the SmoothFace for each surface set that is adjacent here
00439 // GeomTopoTool gTopoTool(_mb);
00440 std::vector< EntityHandle > faces;
00441 std::vector< int > senses;
00442 ErrorCode rval = _gtt->get_senses( _set, faces, senses );
00443 if( MB_SUCCESS != rval ) return;
00444
00445 // need to find the smooth face attached
00446 unsigned int numSurfacesAdjacent = faces.size();
00447 // get the edges, and then get the
00448 // std::vector entities;
00449 _mb->get_entities_by_type( _set, MBEDGE, _entities ); // no recursion!!
00450 // each edge has the tangent computed already
00451 Tag tangentsTag;
00452 rval = _mb->tag_get_handle( "TANGENTS", 6, MB_TYPE_DOUBLE, tangentsTag );
00453 if( rval != MB_SUCCESS ) return; // some error should be thrown
00454
00455 // we do not want to search every time
00456 std::vector< SmoothFace* > smoothFaceArray;
00457 unsigned int i = 0;
00458 for( i = 0; i < numSurfacesAdjacent; i++ )
00459 {
00460 SmoothFace* sms = mapSurfaces[faces[i]];
00461 smoothFaceArray.push_back( sms );
00462 }
00463
00464 unsigned int e = 0;
00465 for( e = 0; e < _entities.size(); e++ )
00466 {
00467 CartVect zero( 0. );
00468 CartVect ctrlP[3] = { zero, zero, zero }; // null positions initially
00469 // the control points are averaged from connected faces
00470 EntityHandle edge = _entities[e]; // the edge in the chain
00471
00472 int nnodes;
00473 const EntityHandle* conn2;
00474 rval = _mb->get_connectivity( edge, conn2, nnodes );
00475 if( rval != MB_SUCCESS || 2 != nnodes ) return; // or continue or return error
00476
00477 // double coords[6]; // store the coordinates for the nodes
00478 CartVect P[2];
00479 // ErrorCode rval = _mb->get_coords(conn2, 2, coords);
00480 rval = _mb->get_coords( conn2, 2, (double*)&P[0] );
00481 if( rval != MB_SUCCESS ) return;
00482
00483 CartVect chord = P[1] - P[0];
00484 _leng += chord.length();
00485 _fractions.push_back( _leng );
00486 CartVect N[2];
00487
00488 // MBCartVect N0(&normalVec[0]);
00489 // MBCartVect N3(&normalVec[3]);
00490 CartVect T[2]; // T0, T3
00491 // if (edge->num_adj_facets() <= 1) {
00492 // stat = compute_curve_tangent(edge, min_dot, T0, T3);
00493 // if (stat != CUBIT_SUCCESS)
00494 // return stat;
00495 //} else {
00496 //}
00497 rval = _mb->tag_get_data( tangentsTag, &edge, 1, &T[0] );
00498 if( rval != MB_SUCCESS ) return;
00499
00500 for( i = 0; i < numSurfacesAdjacent; i++ )
00501 {
00502 CartVect controlForEdge[3];
00503 rval = smoothFaceArray[i]->get_normals_for_vertices( conn2, N );
00504 if( rval != MB_SUCCESS ) return;
00505
00506 rval = smoothFaceArray[i]->init_edge_control_points( P[0], P[1], N[0], N[1], T[0], T[1], controlForEdge );
00507 if( rval != MB_SUCCESS ) return;
00508
00509 // accumulate those over faces!!!
00510 for( int j = 0; j < 3; j++ )
00511 {
00512 ctrlP[j] += controlForEdge[j];
00513 }
00514 }
00515 // now divide them for the average position!
00516 for( int j = 0; j < 3; j++ )
00517 {
00518 ctrlP[j] /= numSurfacesAdjacent;
00519 }
00520 // we are done, set the control points now!
00521 // edge->control_points(ctrl_pts, 4);
00522 rval = _mb->tag_set_data( controlPointsTag, &edge, 1, &ctrlP[0] );
00523 if( rval != MB_SUCCESS ) return;
00524
00525 this->_edgeTag = controlPointsTag; // this is a tag that will be stored with the edge
00526 // is that a waste of memory or not...
00527 // also mark the edge for later on
00528 unsigned char used = 1;
00529 _mb->tag_set_data( markTag, &edge, 1, &used );
00530 }
00531 // now divide fractions, to make them vary from 0 to 1
00532 assert( _leng > 0. );
00533 for( e = 0; e < _entities.size(); e++ )
00534 _fractions[e] /= _leng;
00535 }
00536
00537 ErrorCode SmoothCurve::evaluate_smooth_edge( EntityHandle eh, double& tt, CartVect& outv, CartVect& out_tangent )
00538 {
00539 CartVect P[2]; // P0 and P1
00540 CartVect controlPoints[3]; // edge control points
00541 double t4, t3, t2, one_minus_t, one_minus_t2, one_minus_t3, one_minus_t4;
00542
00543 // project the position to the linear edge
00544 // t is from 0 to 1 only!!
00545 // double tt = (t + 1) * 0.5;
00546 if( tt <= 0.0 ) tt = 0.0;
00547 if( tt >= 1.0 ) tt = 1.0;
00548
00549 int nnodes = 0;
00550 const EntityHandle* conn2 = NULL;
00551 ErrorCode rval = _mb->get_connectivity( eh, conn2, nnodes );
00552 if( rval != MB_SUCCESS ) return rval;
00553
00554 rval = _mb->get_coords( conn2, 2, (double*)&P[0] );
00555 if( rval != MB_SUCCESS ) return rval;
00556
00557 if( 0 == _edgeTag )
00558 {
00559 rval = _mb->tag_get_handle( "CONTROLEDGE", 9, MB_TYPE_DOUBLE, _edgeTag );
00560 if( rval != MB_SUCCESS ) return rval;
00561 }
00562 rval = _mb->tag_get_data( _edgeTag, &eh, 1, (double*)&controlPoints[0] );
00563 if( rval != MB_SUCCESS ) return rval;
00564
00565 t2 = tt * tt;
00566 t3 = t2 * tt;
00567 t4 = t3 * tt;
00568 one_minus_t = 1. - tt;
00569 one_minus_t2 = one_minus_t * one_minus_t;
00570 one_minus_t3 = one_minus_t2 * one_minus_t;
00571 one_minus_t4 = one_minus_t3 * one_minus_t;
00572
00573 outv = one_minus_t4 * P[0] + 4. * one_minus_t3 * tt * controlPoints[0] + 6. * one_minus_t2 * t2 * controlPoints[1] +
00574 4. * one_minus_t * t3 * controlPoints[2] + t4 * P[1];
00575
00576 out_tangent = -4. * one_minus_t3 * P[0] + 4. * ( one_minus_t3 - 3. * tt * one_minus_t2 ) * controlPoints[0] +
00577 12. * ( tt * one_minus_t2 - t2 * one_minus_t ) * controlPoints[1] +
00578 4. * ( 3. * t2 * one_minus_t - t3 ) * controlPoints[2] + 4. * t3 * P[1];
00579 return MB_SUCCESS;
00580 }
00581 } // namespace moab