Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 /* 00002 * MOAB, a Mesh-Oriented datABase, is a software component for creating, 00003 * storing and accessing finite element mesh data. 00004 * 00005 * Copyright 2004 Sandia Corporation. Under the terms of Contract 00006 * DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government 00007 * retains certain rights in this software. 00008 * 00009 * This library is free software; you can redistribute it and/or 00010 * modify it under the terms of the GNU Lesser General Public 00011 * License as published by the Free Software Foundation; either 00012 * version 2.1 of the License, or (at your option) any later version. 00013 * 00014 */ 00015 00016 /**\file Geometry.cpp 00017 *\author Jason Kraftcheck ([email protected]) 00018 *\date 2006-07-27 00019 */ 00020 00021 #include "moab/CartVect.hpp" 00022 #include "moab/CN.hpp" 00023 #include "moab/GeomUtil.hpp" 00024 #include "moab/Matrix3.hpp" 00025 #include "moab/Util.hpp" 00026 #include <cmath> 00027 #include <algorithm> 00028 #include <cassert> 00029 #include <iostream> 00030 #include <limits> 00031 00032 namespace moab 00033 { 00034 00035 namespace GeomUtil 00036 { 00037 00038 static inline void min_max_3( double a, double b, double c, double& min, double& max ) 00039 { 00040 if( a < b ) 00041 { 00042 if( a < c ) 00043 { 00044 min = a; 00045 max = b > c ? b : c; 00046 } 00047 else 00048 { 00049 min = c; 00050 max = b; 00051 } 00052 } 00053 else if( b < c ) 00054 { 00055 min = b; 00056 max = a > c ? a : c; 00057 } 00058 else 00059 { 00060 min = c; 00061 max = a; 00062 } 00063 } 00064 00065 static inline double dot_abs( const CartVect& u, const CartVect& v ) 00066 { 00067 return fabs( u[0] * v[0] ) + fabs( u[1] * v[1] ) + fabs( u[2] * v[2] ); 00068 } 00069 00070 bool segment_box_intersect( CartVect box_min, 00071 CartVect box_max, 00072 const CartVect& seg_pt, 00073 const CartVect& seg_unit_dir, 00074 double& seg_start, 00075 double& seg_end ) 00076 { 00077 // translate so that seg_pt is at origin 00078 box_min -= seg_pt; 00079 box_max -= seg_pt; 00080 00081 for( unsigned i = 0; i < 3; ++i ) 00082 { // X, Y, and Z slabs 00083 00084 // intersect line with slab planes 00085 const double t_min = box_min[i] / seg_unit_dir[i]; 00086 const double t_max = box_max[i] / seg_unit_dir[i]; 00087 00088 // check if line is parallel to planes 00089 if( !Util::is_finite( t_min ) ) 00090 { 00091 if( box_min[i] > 0.0 || box_max[i] < 0.0 ) return false; 00092 continue; 00093 } 00094 00095 if( seg_unit_dir[i] < 0 ) 00096 { 00097 if( t_min < seg_end ) seg_end = t_min; 00098 if( t_max > seg_start ) seg_start = t_max; 00099 } 00100 else 00101 { // seg_unit_dir[i] > 0 00102 if( t_min > seg_start ) seg_start = t_min; 00103 if( t_max < seg_end ) seg_end = t_max; 00104 } 00105 } 00106 00107 return seg_start <= seg_end; 00108 } 00109 00110 /* Function to return the vertex with the lowest coordinates. To force the same 00111 ray-edge computation, the Plücker test needs to use consistent edge 00112 representation. This would be more simple with MOAB handles instead of 00113 coordinates... */ 00114 inline bool first( const CartVect& a, const CartVect& b ) 00115 { 00116 if( a[0] < b[0] ) 00117 { 00118 return true; 00119 } 00120 else if( a[0] == b[0] ) 00121 { 00122 if( a[1] < b[1] ) 00123 { 00124 return true; 00125 } 00126 else if( a[1] == b[1] ) 00127 { 00128 if( a[2] < b[2] ) 00129 { 00130 return true; 00131 } 00132 else 00133 { 00134 return false; 00135 } 00136 } 00137 else 00138 { 00139 return false; 00140 } 00141 } 00142 else 00143 { 00144 return false; 00145 } 00146 } 00147 00148 double plucker_edge_test( const CartVect& vertexa, 00149 const CartVect& vertexb, 00150 const CartVect& ray, 00151 const CartVect& ray_normal ) 00152 { 00153 00154 double pip; 00155 const double near_zero = 10 * std::numeric_limits< double >::epsilon(); 00156 00157 if( first( vertexa, vertexb ) ) 00158 { 00159 const CartVect edge = vertexb - vertexa; 00160 const CartVect edge_normal = edge * vertexa; 00161 pip = ray % edge_normal + ray_normal % edge; 00162 } 00163 else 00164 { 00165 const CartVect edge = vertexa - vertexb; 00166 const CartVect edge_normal = edge * vertexb; 00167 pip = ray % edge_normal + ray_normal % edge; 00168 pip = -pip; 00169 } 00170 00171 if( near_zero > fabs( pip ) ) pip = 0.0; 00172 00173 return pip; 00174 } 00175 00176 #define EXIT_EARLY \ 00177 if( type ) *type = NONE; \ 00178 return false; 00179 00180 /* This test uses the same edge-ray computation for adjacent triangles so that 00181 rays passing close to edges/nodes are handled consistently. 00182 00183 Reports intersection type for post processing of special cases. Optionally 00184 screen by orientation and negative/nonnegative distance limits. 00185 00186 If screening by orientation, substantial pruning can occur. Indicate 00187 desired orientation by passing 1 (forward), -1 (reverse), or 0 (no preference). 00188 Note that triangle orientation is not always the same as surface 00189 orientation due to non-manifold surfaces. 00190 00191 N. Platis and T. Theoharis, "Fast Ray-Tetrahedron Intersection using Plücker 00192 Coordinates", Journal of Graphics Tools, Vol. 8, Part 4, Pages 37-48 (2003). */ 00193 bool plucker_ray_tri_intersect( const CartVect vertices[3], 00194 const CartVect& origin, 00195 const CartVect& direction, 00196 double& dist_out, 00197 const double* nonneg_ray_len, 00198 const double* neg_ray_len, 00199 const int* orientation, 00200 intersection_type* type ) 00201 { 00202 00203 const CartVect raya = direction; 00204 const CartVect rayb = direction * origin; 00205 00206 // Determine the value of the first Plucker coordinate from edge 0 00207 double plucker_coord0 = plucker_edge_test( vertices[0], vertices[1], raya, rayb ); 00208 00209 // If orientation is set, confirm that sign of plucker_coordinate indicate 00210 // correct orientation of intersection 00211 if( orientation && ( *orientation ) * plucker_coord0 > 0 ) 00212 { 00213 EXIT_EARLY 00214 } 00215 00216 // Determine the value of the second Plucker coordinate from edge 1 00217 double plucker_coord1 = plucker_edge_test( vertices[1], vertices[2], raya, rayb ); 00218 00219 // If orientation is set, confirm that sign of plucker_coordinate indicate 00220 // correct orientation of intersection 00221 if( orientation ) 00222 { 00223 if( ( *orientation ) * plucker_coord1 > 0 ) 00224 { 00225 EXIT_EARLY 00226 } 00227 // If the orientation is not specified, all plucker_coords must be the same sign or 00228 // zero. 00229 } 00230 else if( ( 0.0 < plucker_coord0 && 0.0 > plucker_coord1 ) || ( 0.0 > plucker_coord0 && 0.0 < plucker_coord1 ) ) 00231 { 00232 EXIT_EARLY 00233 } 00234 00235 // Determine the value of the second Plucker coordinate from edge 2 00236 double plucker_coord2 = plucker_edge_test( vertices[2], vertices[0], raya, rayb ); 00237 00238 // If orientation is set, confirm that sign of plucker_coordinate indicate 00239 // correct orientation of intersection 00240 if( orientation ) 00241 { 00242 if( ( *orientation ) * plucker_coord2 > 0 ) 00243 { 00244 EXIT_EARLY 00245 } 00246 // If the orientation is not specified, all plucker_coords must be the same sign or 00247 // zero. 00248 } 00249 else if( ( 0.0 < plucker_coord1 && 0.0 > plucker_coord2 ) || ( 0.0 > plucker_coord1 && 0.0 < plucker_coord2 ) || 00250 ( 0.0 < plucker_coord0 && 0.0 > plucker_coord2 ) || ( 0.0 > plucker_coord0 && 0.0 < plucker_coord2 ) ) 00251 { 00252 EXIT_EARLY 00253 } 00254 00255 // check for coplanar case to avoid dividing by zero 00256 if( 0.0 == plucker_coord0 && 0.0 == plucker_coord1 && 0.0 == plucker_coord2 ) 00257 { 00258 EXIT_EARLY 00259 } 00260 00261 // get the distance to intersection 00262 const double inverse_sum = 1.0 / ( plucker_coord0 + plucker_coord1 + plucker_coord2 ); 00263 assert( 0.0 != inverse_sum ); 00264 const CartVect intersection( plucker_coord0 * inverse_sum * vertices[2] + 00265 plucker_coord1 * inverse_sum * vertices[0] + 00266 plucker_coord2 * inverse_sum * vertices[1] ); 00267 00268 // To minimize numerical error, get index of largest magnitude direction. 00269 int idx = 0; 00270 double max_abs_dir = 0; 00271 for( unsigned int i = 0; i < 3; ++i ) 00272 { 00273 if( fabs( direction[i] ) > max_abs_dir ) 00274 { 00275 idx = i; 00276 max_abs_dir = fabs( direction[i] ); 00277 } 00278 } 00279 const double dist = ( intersection[idx] - origin[idx] ) / direction[idx]; 00280 00281 // is the intersection within distance limits? 00282 if( ( nonneg_ray_len && *nonneg_ray_len < dist ) || // intersection is beyond positive limit 00283 ( neg_ray_len && *neg_ray_len >= dist ) || // intersection is behind negative limit 00284 ( !neg_ray_len && 0 > dist ) ) 00285 { // Unless a neg_ray_len is used, don't return negative distances 00286 EXIT_EARLY 00287 } 00288 00289 dist_out = dist; 00290 00291 if( type ) 00292 *type = type_list[( ( 0.0 == plucker_coord2 ) << 2 ) + ( ( 0.0 == plucker_coord1 ) << 1 ) + 00293 ( 0.0 == plucker_coord0 )]; 00294 00295 return true; 00296 } 00297 00298 /* Implementation copied from cgmMC ray_tri_contact (overlap.C) */ 00299 bool ray_tri_intersect( const CartVect vertices[3], 00300 const CartVect& b, 00301 const CartVect& v, 00302 double& t_out, 00303 const double* ray_length ) 00304 { 00305 const CartVect p0 = vertices[0] - vertices[1]; // abc 00306 const CartVect p1 = vertices[0] - vertices[2]; // def 00307 // ghi<-v 00308 const CartVect p = vertices[0] - b; // jkl 00309 const CartVect c = p1 * v; // eiMinushf,gfMinusdi,dhMinuseg 00310 const double mP = p0 % c; 00311 const double betaP = p % c; 00312 if( mP > 0 ) 00313 { 00314 if( betaP < 0 ) return false; 00315 } 00316 else if( mP < 0 ) 00317 { 00318 if( betaP > 0 ) return false; 00319 } 00320 else 00321 { 00322 return false; 00323 } 00324 00325 const CartVect d = p0 * p; // jcMinusal,blMinuskc,akMinusjb 00326 double gammaP = v % d; 00327 if( mP > 0 ) 00328 { 00329 if( gammaP < 0 || betaP + gammaP > mP ) return false; 00330 } 00331 else if( betaP + gammaP < mP || gammaP > 0 ) 00332 return false; 00333 00334 const double tP = p1 % d; 00335 const double m = 1.0 / mP; 00336 const double beta = betaP * m; 00337 const double gamma = gammaP * m; 00338 const double t = -tP * m; 00339 if( ray_length && t > *ray_length ) return false; 00340 00341 if( beta < 0 || gamma < 0 || beta + gamma > 1 || t < 0.0 ) return false; 00342 00343 t_out = t; 00344 return true; 00345 } 00346 00347 bool ray_box_intersect( const CartVect& box_min, 00348 const CartVect& box_max, 00349 const CartVect& ray_pt, 00350 const CartVect& ray_dir, 00351 double& t_enter, 00352 double& t_exit ) 00353 { 00354 const double epsilon = 1e-12; 00355 double t1, t2; 00356 00357 // Use 'slabs' method from 13.6.1 of Akenine-Moller 00358 t_enter = 0.0; 00359 t_exit = std::numeric_limits< double >::infinity(); 00360 00361 // Intersect with each pair of axis-aligned planes bounding 00362 // opposite faces of the leaf box 00363 bool ray_is_valid = false; // is ray direction vector zero? 00364 for( int axis = 0; axis < 3; ++axis ) 00365 { 00366 if( fabs( ray_dir[axis] ) < epsilon ) 00367 { // ray parallel to planes 00368 if( ray_pt[axis] >= box_min[axis] && ray_pt[axis] <= box_max[axis] ) 00369 continue; 00370 else 00371 return false; 00372 } 00373 00374 // find t values at which ray intersects each plane 00375 ray_is_valid = true; 00376 t1 = ( box_min[axis] - ray_pt[axis] ) / ray_dir[axis]; 00377 t2 = ( box_max[axis] - ray_pt[axis] ) / ray_dir[axis]; 00378 00379 // t_enter = max( t_enter_x, t_enter_y, t_enter_z ) 00380 // t_exit = min( t_exit_x, t_exit_y, t_exit_z ) 00381 // where 00382 // t_enter_x = min( t1_x, t2_x ); 00383 // t_exit_x = max( t1_x, t2_x ) 00384 if( t1 < t2 ) 00385 { 00386 if( t_enter < t1 ) t_enter = t1; 00387 if( t_exit > t2 ) t_exit = t2; 00388 } 00389 else 00390 { 00391 if( t_enter < t2 ) t_enter = t2; 00392 if( t_exit > t1 ) t_exit = t1; 00393 } 00394 } 00395 00396 return ray_is_valid && ( t_enter <= t_exit ); 00397 } 00398 00399 bool box_plane_overlap( const CartVect& normal, double d, CartVect min, CartVect max ) 00400 { 00401 if( normal[0] < 0.0 ) std::swap( min[0], max[0] ); 00402 if( normal[1] < 0.0 ) std::swap( min[1], max[1] ); 00403 if( normal[2] < 0.0 ) std::swap( min[2], max[2] ); 00404 00405 return ( normal % min <= -d ) && ( normal % max >= -d ); 00406 } 00407 00408 #define CHECK_RANGE( A, B, R ) \ 00409 if( ( A ) < ( B ) ) \ 00410 { \ 00411 if( ( A ) > ( R ) || ( B ) < -( R ) ) return false; \ 00412 } \ 00413 else if( ( B ) > ( R ) || ( A ) < -( R ) ) \ 00414 return false 00415 00416 /* Adapted from: http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html 00417 * Use separating axis theorem to test for overlap between triangle 00418 * and axis-aligned box. 00419 * 00420 * Test for overlap in these directions: 00421 * 1) {x,y,z}-directions 00422 * 2) normal of triangle 00423 * 3) crossprod of triangle edge with {x,y,z}-direction 00424 */ 00425 bool box_tri_overlap( const CartVect vertices[3], const CartVect& box_center, const CartVect& box_dims ) 00426 { 00427 // translate everything such that box is centered at origin 00428 const CartVect v0( vertices[0] - box_center ); 00429 const CartVect v1( vertices[1] - box_center ); 00430 const CartVect v2( vertices[2] - box_center ); 00431 00432 // do case 1) tests 00433 if( v0[0] > box_dims[0] && v1[0] > box_dims[0] && v2[0] > box_dims[0] ) return false; 00434 if( v0[1] > box_dims[1] && v1[1] > box_dims[1] && v2[1] > box_dims[1] ) return false; 00435 if( v0[2] > box_dims[2] && v1[2] > box_dims[2] && v2[2] > box_dims[2] ) return false; 00436 if( v0[0] < -box_dims[0] && v1[0] < -box_dims[0] && v2[0] < -box_dims[0] ) return false; 00437 if( v0[1] < -box_dims[1] && v1[1] < -box_dims[1] && v2[1] < -box_dims[1] ) return false; 00438 if( v0[2] < -box_dims[2] && v1[2] < -box_dims[2] && v2[2] < -box_dims[2] ) return false; 00439 00440 // compute triangle edge vectors 00441 const CartVect e0( vertices[1] - vertices[0] ); 00442 const CartVect e1( vertices[2] - vertices[1] ); 00443 const CartVect e2( vertices[0] - vertices[2] ); 00444 00445 // do case 3) tests 00446 double fex, fey, fez, p0, p1, p2, rad; 00447 fex = fabs( e0[0] ); 00448 fey = fabs( e0[1] ); 00449 fez = fabs( e0[2] ); 00450 00451 p0 = e0[2] * v0[1] - e0[1] * v0[2]; 00452 p2 = e0[2] * v2[1] - e0[1] * v2[2]; 00453 rad = fez * box_dims[1] + fey * box_dims[2]; 00454 CHECK_RANGE( p0, p2, rad ); 00455 00456 p0 = -e0[2] * v0[0] + e0[0] * v0[2]; 00457 p2 = -e0[2] * v2[0] + e0[0] * v2[2]; 00458 rad = fez * box_dims[0] + fex * box_dims[2]; 00459 CHECK_RANGE( p0, p2, rad ); 00460 00461 p1 = e0[1] * v1[0] - e0[0] * v1[1]; 00462 p2 = e0[1] * v2[0] - e0[0] * v2[1]; 00463 rad = fey * box_dims[0] + fex * box_dims[1]; 00464 CHECK_RANGE( p1, p2, rad ); 00465 00466 fex = fabs( e1[0] ); 00467 fey = fabs( e1[1] ); 00468 fez = fabs( e1[2] ); 00469 00470 p0 = e1[2] * v0[1] - e1[1] * v0[2]; 00471 p2 = e1[2] * v2[1] - e1[1] * v2[2]; 00472 rad = fez * box_dims[1] + fey * box_dims[2]; 00473 CHECK_RANGE( p0, p2, rad ); 00474 00475 p0 = -e1[2] * v0[0] + e1[0] * v0[2]; 00476 p2 = -e1[2] * v2[0] + e1[0] * v2[2]; 00477 rad = fez * box_dims[0] + fex * box_dims[2]; 00478 CHECK_RANGE( p0, p2, rad ); 00479 00480 p0 = e1[1] * v0[0] - e1[0] * v0[1]; 00481 p1 = e1[1] * v1[0] - e1[0] * v1[1]; 00482 rad = fey * box_dims[0] + fex * box_dims[1]; 00483 CHECK_RANGE( p0, p1, rad ); 00484 00485 fex = fabs( e2[0] ); 00486 fey = fabs( e2[1] ); 00487 fez = fabs( e2[2] ); 00488 00489 p0 = e2[2] * v0[1] - e2[1] * v0[2]; 00490 p1 = e2[2] * v1[1] - e2[1] * v1[2]; 00491 rad = fez * box_dims[1] + fey * box_dims[2]; 00492 CHECK_RANGE( p0, p1, rad ); 00493 00494 p0 = -e2[2] * v0[0] + e2[0] * v0[2]; 00495 p1 = -e2[2] * v1[0] + e2[0] * v1[2]; 00496 rad = fez * box_dims[0] + fex * box_dims[2]; 00497 CHECK_RANGE( p0, p1, rad ); 00498 00499 p1 = e2[1] * v1[0] - e2[0] * v1[1]; 00500 p2 = e2[1] * v2[0] - e2[0] * v2[1]; 00501 rad = fey * box_dims[0] + fex * box_dims[1]; 00502 CHECK_RANGE( p1, p2, rad ); 00503 00504 // do case 2) test 00505 CartVect n = e0 * e1; 00506 return box_plane_overlap( n, -( n % v0 ), -box_dims, box_dims ); 00507 } 00508 00509 bool box_tri_overlap( const CartVect triangle_corners[3], 00510 const CartVect& box_min_corner, 00511 const CartVect& box_max_corner, 00512 double tolerance ) 00513 { 00514 const CartVect box_center = 0.5 * ( box_max_corner + box_min_corner ); 00515 const CartVect box_hf_dim = 0.5 * ( box_max_corner - box_min_corner ); 00516 return box_tri_overlap( triangle_corners, box_center, box_hf_dim + CartVect( tolerance ) ); 00517 } 00518 00519 bool box_elem_overlap( const CartVect* elem_corners, 00520 EntityType elem_type, 00521 const CartVect& center, 00522 const CartVect& dims, 00523 int nodecount ) 00524 { 00525 00526 switch( elem_type ) 00527 { 00528 case MBTRI: 00529 return box_tri_overlap( elem_corners, center, dims ); 00530 case MBTET: 00531 return box_tet_overlap( elem_corners, center, dims ); 00532 case MBHEX: 00533 return box_hex_overlap( elem_corners, center, dims ); 00534 case MBPOLYGON: { 00535 CartVect vt[3]; 00536 vt[0] = elem_corners[0]; 00537 vt[1] = elem_corners[1]; 00538 for( int j = 2; j < nodecount; j++ ) 00539 { 00540 vt[2] = elem_corners[j]; 00541 if( box_tri_overlap( vt, center, dims ) ) return true; 00542 } 00543 // none of the triangles overlap, then we return false 00544 return false; 00545 } 00546 case MBPOLYHEDRON: 00547 assert( false ); 00548 return false; 00549 default: 00550 return box_linear_elem_overlap( elem_corners, elem_type, center, dims ); 00551 } 00552 } 00553 00554 static inline CartVect quad_norm( const CartVect& v1, const CartVect& v2, const CartVect& v3, const CartVect& v4 ) 00555 { 00556 return ( -v1 + v2 + v3 - v4 ) * ( -v1 - v2 + v3 + v4 ); 00557 } 00558 00559 static inline CartVect tri_norm( const CartVect& v1, const CartVect& v2, const CartVect& v3 ) 00560 { 00561 return ( v2 - v1 ) * ( v3 - v1 ); 00562 } 00563 00564 bool box_linear_elem_overlap( const CartVect* elem_corners, 00565 EntityType type, 00566 const CartVect& box_center, 00567 const CartVect& box_halfdims ) 00568 { 00569 CartVect corners[8]; 00570 const unsigned num_corner = CN::VerticesPerEntity( type ); 00571 assert( num_corner <= sizeof( corners ) / sizeof( corners[0] ) ); 00572 for( unsigned i = 0; i < num_corner; ++i ) 00573 corners[i] = elem_corners[i] - box_center; 00574 return box_linear_elem_overlap( corners, type, box_halfdims ); 00575 } 00576 00577 bool box_linear_elem_overlap( const CartVect* elem_corners, EntityType type, const CartVect& dims ) 00578 { 00579 // Do Separating Axis Theorem: 00580 // If the element and the box overlap, then the 1D projections 00581 // onto at least one of the axes in the following three sets 00582 // must overlap (assuming convex polyhedral element). 00583 // 1) The normals of the faces of the box (the principal axes) 00584 // 2) The crossproduct of each element edge with each box edge 00585 // (crossproduct of each edge with each principal axis) 00586 // 3) The normals of the faces of the element 00587 00588 int e, f; // loop counters 00589 int i; 00590 double dot, cross[2], tmp; 00591 CartVect norm; 00592 int indices[4]; // element edge/face vertex indices 00593 00594 // test box face normals (principal axes) 00595 const int num_corner = CN::VerticesPerEntity( type ); 00596 int not_less[3] = { num_corner, num_corner, num_corner }; 00597 int not_greater[3] = { num_corner, num_corner, num_corner }; 00598 int not_inside; 00599 for( i = 0; i < num_corner; ++i ) 00600 { // for each element corner 00601 not_inside = 3; 00602 00603 if( elem_corners[i][0] < -dims[0] ) 00604 --not_less[0]; 00605 else if( elem_corners[i][0] > dims[0] ) 00606 --not_greater[0]; 00607 else 00608 --not_inside; 00609 00610 if( elem_corners[i][1] < -dims[1] ) 00611 --not_less[1]; 00612 else if( elem_corners[i][1] > dims[1] ) 00613 --not_greater[1]; 00614 else 00615 --not_inside; 00616 00617 if( elem_corners[i][2] < -dims[2] ) 00618 --not_less[2]; 00619 else if( elem_corners[i][2] > dims[2] ) 00620 --not_greater[2]; 00621 else 00622 --not_inside; 00623 00624 if( !not_inside ) return true; 00625 } 00626 // If all points less than min_x of box, then 00627 // not_less[0] == 0, and therefore 00628 // the following product is zero. 00629 if( not_greater[0] * not_greater[1] * not_greater[2] * not_less[0] * not_less[1] * not_less[2] == 0 ) 00630 return false; 00631 00632 // Test edge-edge crossproducts 00633 00634 // Edge directions for box are principal axis, so 00635 // for each element edge, check along the cross-product 00636 // of that edge with each of the tree principal axes. 00637 const int num_edge = CN::NumSubEntities( type, 1 ); 00638 for( e = 0; e < num_edge; ++e ) 00639 { // for each element edge 00640 // get which element vertices bound the edge 00641 CN::SubEntityVertexIndices( type, 1, e, indices ); 00642 00643 // X-Axis 00644 00645 // calculate crossproduct: axis x (v1 - v0), 00646 // where v1 and v0 are edge vertices. 00647 cross[0] = elem_corners[indices[0]][2] - elem_corners[indices[1]][2]; 00648 cross[1] = elem_corners[indices[1]][1] - elem_corners[indices[0]][1]; 00649 // skip if parallel 00650 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00651 { 00652 dot = fabs( cross[0] * dims[1] ) + fabs( cross[1] * dims[2] ); 00653 not_less[0] = not_greater[0] = num_corner - 1; 00654 for( i = ( indices[0] + 1 ) % num_corner; i != indices[0]; i = ( i + 1 ) % num_corner ) 00655 { // for each element corner 00656 tmp = cross[0] * elem_corners[i][1] + cross[1] * elem_corners[i][2]; 00657 not_less[0] -= ( tmp < -dot ); 00658 not_greater[0] -= ( tmp > dot ); 00659 } 00660 00661 if( not_less[0] * not_greater[0] == 0 ) return false; 00662 } 00663 00664 // Y-Axis 00665 00666 // calculate crossproduct: axis x (v1 - v0), 00667 // where v1 and v0 are edge vertices. 00668 cross[0] = elem_corners[indices[0]][0] - elem_corners[indices[1]][0]; 00669 cross[1] = elem_corners[indices[1]][2] - elem_corners[indices[0]][2]; 00670 // skip if parallel 00671 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00672 { 00673 dot = fabs( cross[0] * dims[2] ) + fabs( cross[1] * dims[0] ); 00674 not_less[0] = not_greater[0] = num_corner - 1; 00675 for( i = ( indices[0] + 1 ) % num_corner; i != indices[0]; i = ( i + 1 ) % num_corner ) 00676 { // for each element corner 00677 tmp = cross[0] * elem_corners[i][2] + cross[1] * elem_corners[i][0]; 00678 not_less[0] -= ( tmp < -dot ); 00679 not_greater[0] -= ( tmp > dot ); 00680 } 00681 00682 if( not_less[0] * not_greater[0] == 0 ) return false; 00683 } 00684 00685 // Z-Axis 00686 00687 // calculate crossproduct: axis x (v1 - v0), 00688 // where v1 and v0 are edge vertices. 00689 cross[0] = elem_corners[indices[0]][1] - elem_corners[indices[1]][1]; 00690 cross[1] = elem_corners[indices[1]][0] - elem_corners[indices[0]][0]; 00691 // skip if parallel 00692 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00693 { 00694 dot = fabs( cross[0] * dims[0] ) + fabs( cross[1] * dims[1] ); 00695 not_less[0] = not_greater[0] = num_corner - 1; 00696 for( i = ( indices[0] + 1 ) % num_corner; i != indices[0]; i = ( i + 1 ) % num_corner ) 00697 { // for each element corner 00698 tmp = cross[0] * elem_corners[i][0] + cross[1] * elem_corners[i][1]; 00699 not_less[0] -= ( tmp < -dot ); 00700 not_greater[0] -= ( tmp > dot ); 00701 } 00702 00703 if( not_less[0] * not_greater[0] == 0 ) return false; 00704 } 00705 } 00706 00707 // test element face normals 00708 const int num_face = CN::NumSubEntities( type, 2 ); 00709 for( f = 0; f < num_face; ++f ) 00710 { 00711 CN::SubEntityVertexIndices( type, 2, f, indices ); 00712 switch( CN::SubEntityType( type, 2, f ) ) 00713 { 00714 case MBTRI: 00715 norm = tri_norm( elem_corners[indices[0]], elem_corners[indices[1]], elem_corners[indices[2]] ); 00716 break; 00717 case MBQUAD: 00718 norm = quad_norm( elem_corners[indices[0]], elem_corners[indices[1]], elem_corners[indices[2]], 00719 elem_corners[indices[3]] ); 00720 break; 00721 default: 00722 assert( false ); 00723 continue; 00724 } 00725 00726 dot = dot_abs( norm, dims ); 00727 00728 // for each element vertex 00729 not_less[0] = not_greater[0] = num_corner; 00730 for( i = 0; i < num_corner; ++i ) 00731 { 00732 tmp = norm % elem_corners[i]; 00733 not_less[0] -= ( tmp < -dot ); 00734 not_greater[0] -= ( tmp > dot ); 00735 } 00736 00737 if( not_less[0] * not_greater[0] == 0 ) return false; 00738 } 00739 00740 // Overlap on all tested axes. 00741 return true; 00742 } 00743 00744 bool box_hex_overlap( const CartVect* elem_corners, const CartVect& center, const CartVect& dims ) 00745 { 00746 // Do Separating Axis Theorem: 00747 // If the element and the box overlap, then the 1D projections 00748 // onto at least one of the axes in the following three sets 00749 // must overlap (assuming convex polyhedral element). 00750 // 1) The normals of the faces of the box (the principal axes) 00751 // 2) The crossproduct of each element edge with each box edge 00752 // (crossproduct of each edge with each principal axis) 00753 // 3) The normals of the faces of the element 00754 00755 unsigned i, e, f; // loop counters 00756 double dot, cross[2], tmp; 00757 CartVect norm; 00758 const CartVect corners[8] = { elem_corners[0] - center, elem_corners[1] - center, elem_corners[2] - center, 00759 elem_corners[3] - center, elem_corners[4] - center, elem_corners[5] - center, 00760 elem_corners[6] - center, elem_corners[7] - center }; 00761 00762 // test box face normals (principal axes) 00763 int not_less[3] = { 8, 8, 8 }; 00764 int not_greater[3] = { 8, 8, 8 }; 00765 int not_inside; 00766 for( i = 0; i < 8; ++i ) 00767 { // for each element corner 00768 not_inside = 3; 00769 00770 if( corners[i][0] < -dims[0] ) 00771 --not_less[0]; 00772 else if( corners[i][0] > dims[0] ) 00773 --not_greater[0]; 00774 else 00775 --not_inside; 00776 00777 if( corners[i][1] < -dims[1] ) 00778 --not_less[1]; 00779 else if( corners[i][1] > dims[1] ) 00780 --not_greater[1]; 00781 else 00782 --not_inside; 00783 00784 if( corners[i][2] < -dims[2] ) 00785 --not_less[2]; 00786 else if( corners[i][2] > dims[2] ) 00787 --not_greater[2]; 00788 else 00789 --not_inside; 00790 00791 if( !not_inside ) return true; 00792 } 00793 // If all points less than min_x of box, then 00794 // not_less[0] == 0, and therefore 00795 // the following product is zero. 00796 if( not_greater[0] * not_greater[1] * not_greater[2] * not_less[0] * not_less[1] * not_less[2] == 0 ) 00797 return false; 00798 00799 // Test edge-edge crossproducts 00800 const unsigned edges[12][2] = { { 0, 1 }, { 0, 4 }, { 0, 3 }, { 2, 3 }, { 2, 1 }, { 2, 6 }, 00801 { 5, 6 }, { 5, 1 }, { 5, 4 }, { 7, 4 }, { 7, 3 }, { 7, 6 } }; 00802 00803 // Edge directions for box are principal axis, so 00804 // for each element edge, check along the cross-product 00805 // of that edge with each of the tree principal axes. 00806 for( e = 0; e < 12; ++e ) 00807 { // for each element edge 00808 // get which element vertices bound the edge 00809 const CartVect& v0 = corners[edges[e][0]]; 00810 const CartVect& v1 = corners[edges[e][1]]; 00811 00812 // X-Axis 00813 00814 // calculate crossproduct: axis x (v1 - v0), 00815 // where v1 and v0 are edge vertices. 00816 cross[0] = v0[2] - v1[2]; 00817 cross[1] = v1[1] - v0[1]; 00818 // skip if parallel 00819 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00820 { 00821 dot = fabs( cross[0] * dims[1] ) + fabs( cross[1] * dims[2] ); 00822 not_less[0] = not_greater[0] = 7; 00823 for( i = ( edges[e][0] + 1 ) % 8; i != edges[e][0]; i = ( i + 1 ) % 8 ) 00824 { // for each element corner 00825 tmp = cross[0] * corners[i][1] + cross[1] * corners[i][2]; 00826 not_less[0] -= ( tmp < -dot ); 00827 not_greater[0] -= ( tmp > dot ); 00828 } 00829 00830 if( not_less[0] * not_greater[0] == 0 ) return false; 00831 } 00832 00833 // Y-Axis 00834 00835 // calculate crossproduct: axis x (v1 - v0), 00836 // where v1 and v0 are edge vertices. 00837 cross[0] = v0[0] - v1[0]; 00838 cross[1] = v1[2] - v0[2]; 00839 // skip if parallel 00840 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00841 { 00842 dot = fabs( cross[0] * dims[2] ) + fabs( cross[1] * dims[0] ); 00843 not_less[0] = not_greater[0] = 7; 00844 for( i = ( edges[e][0] + 1 ) % 8; i != edges[e][0]; i = ( i + 1 ) % 8 ) 00845 { // for each element corner 00846 tmp = cross[0] * corners[i][2] + cross[1] * corners[i][0]; 00847 not_less[0] -= ( tmp < -dot ); 00848 not_greater[0] -= ( tmp > dot ); 00849 } 00850 00851 if( not_less[0] * not_greater[0] == 0 ) return false; 00852 } 00853 00854 // Z-Axis 00855 00856 // calculate crossproduct: axis x (v1 - v0), 00857 // where v1 and v0 are edge vertices. 00858 cross[0] = v0[1] - v1[1]; 00859 cross[1] = v1[0] - v0[0]; 00860 // skip if parallel 00861 if( ( cross[0] * cross[0] + cross[1] * cross[1] ) >= std::numeric_limits< double >::epsilon() ) 00862 { 00863 dot = fabs( cross[0] * dims[0] ) + fabs( cross[1] * dims[1] ); 00864 not_less[0] = not_greater[0] = 7; 00865 for( i = ( edges[e][0] + 1 ) % 8; i != edges[e][0]; i = ( i + 1 ) % 8 ) 00866 { // for each element corner 00867 tmp = cross[0] * corners[i][0] + cross[1] * corners[i][1]; 00868 not_less[0] -= ( tmp < -dot ); 00869 not_greater[0] -= ( tmp > dot ); 00870 } 00871 00872 if( not_less[0] * not_greater[0] == 0 ) return false; 00873 } 00874 } 00875 00876 // test element face normals 00877 const unsigned faces[6][4] = { { 0, 1, 2, 3 }, { 0, 1, 5, 4 }, { 1, 2, 6, 5 }, 00878 { 2, 6, 7, 3 }, { 3, 7, 4, 0 }, { 7, 4, 5, 6 } }; 00879 for( f = 0; f < 6; ++f ) 00880 { 00881 norm = quad_norm( corners[faces[f][0]], corners[faces[f][1]], corners[faces[f][2]], corners[faces[f][3]] ); 00882 00883 dot = dot_abs( norm, dims ); 00884 00885 // for each element vertex 00886 not_less[0] = not_greater[0] = 8; 00887 for( i = 0; i < 8; ++i ) 00888 { 00889 tmp = norm % corners[i]; 00890 not_less[0] -= ( tmp < -dot ); 00891 not_greater[0] -= ( tmp > dot ); 00892 } 00893 00894 if( not_less[0] * not_greater[0] == 0 ) return false; 00895 } 00896 00897 // Overlap on all tested axes. 00898 return true; 00899 } 00900 00901 static inline bool box_tet_overlap_edge( const CartVect& dims, 00902 const CartVect& edge, 00903 const CartVect& ve, 00904 const CartVect& v1, 00905 const CartVect& v2 ) 00906 { 00907 double dot, dot1, dot2, dot3, min, max; 00908 00909 // edge x X 00910 if( fabs( edge[1] * edge[2] ) > std::numeric_limits< double >::epsilon() ) 00911 { 00912 dot = fabs( edge[2] ) * dims[1] + fabs( edge[1] ) * dims[2]; 00913 dot1 = edge[2] * ve[1] - edge[1] * ve[2]; 00914 dot2 = edge[2] * v1[1] - edge[1] * v1[2]; 00915 dot3 = edge[2] * v2[1] - edge[1] * v2[2]; 00916 min_max_3( dot1, dot2, dot3, min, max ); 00917 if( max < -dot || min > dot ) return false; 00918 } 00919 00920 // edge x Y 00921 if( fabs( edge[1] * edge[2] ) > std::numeric_limits< double >::epsilon() ) 00922 { 00923 dot = fabs( edge[2] ) * dims[0] + fabs( edge[0] ) * dims[2]; 00924 dot1 = -edge[2] * ve[0] + edge[0] * ve[2]; 00925 dot2 = -edge[2] * v1[0] + edge[0] * v1[2]; 00926 dot3 = -edge[2] * v2[0] + edge[0] * v2[2]; 00927 min_max_3( dot1, dot2, dot3, min, max ); 00928 if( max < -dot || min > dot ) return false; 00929 } 00930 00931 // edge x Z 00932 if( fabs( edge[1] * edge[2] ) > std::numeric_limits< double >::epsilon() ) 00933 { 00934 dot = fabs( edge[1] ) * dims[0] + fabs( edge[0] ) * dims[1]; 00935 dot1 = edge[1] * ve[0] - edge[0] * ve[1]; 00936 dot2 = edge[1] * v1[0] - edge[0] * v1[1]; 00937 dot3 = edge[1] * v2[0] - edge[0] * v2[1]; 00938 min_max_3( dot1, dot2, dot3, min, max ); 00939 if( max < -dot || min > dot ) return false; 00940 } 00941 00942 return true; 00943 } 00944 00945 bool box_tet_overlap( const CartVect* corners_in, const CartVect& center, const CartVect& dims ) 00946 { 00947 // Do Separating Axis Theorem: 00948 // If the element and the box overlap, then the 1D projections 00949 // onto at least one of the axes in the following three sets 00950 // must overlap (assuming convex polyhedral element). 00951 // 1) The normals of the faces of the box (the principal axes) 00952 // 2) The crossproduct of each element edge with each box edge 00953 // (crossproduct of each edge with each principal axis) 00954 // 3) The normals of the faces of the element 00955 00956 // Translate problem such that box center is at origin. 00957 const CartVect corners[4] = { corners_in[0] - center, corners_in[1] - center, corners_in[2] - center, 00958 corners_in[3] - center }; 00959 00960 // 0) Check if any vertex is within the box 00961 if( fabs( corners[0][0] ) <= dims[0] && fabs( corners[0][1] ) <= dims[1] && fabs( corners[0][2] ) <= dims[2] ) 00962 return true; 00963 if( fabs( corners[1][0] ) <= dims[0] && fabs( corners[1][1] ) <= dims[1] && fabs( corners[1][2] ) <= dims[2] ) 00964 return true; 00965 if( fabs( corners[2][0] ) <= dims[0] && fabs( corners[2][1] ) <= dims[1] && fabs( corners[2][2] ) <= dims[2] ) 00966 return true; 00967 if( fabs( corners[3][0] ) <= dims[0] && fabs( corners[3][1] ) <= dims[1] && fabs( corners[3][2] ) <= dims[2] ) 00968 return true; 00969 00970 // 1) Check for overlap on each principal axis (box face normal) 00971 // X 00972 if( corners[0][0] < -dims[0] && corners[1][0] < -dims[0] && corners[2][0] < -dims[0] && 00973 corners[3][0] < -dims[0] ) 00974 return false; 00975 if( corners[0][0] > dims[0] && corners[1][0] > dims[0] && corners[2][0] > dims[0] && corners[3][0] > dims[0] ) 00976 return false; 00977 // Y 00978 if( corners[0][1] < -dims[1] && corners[1][1] < -dims[1] && corners[2][1] < -dims[1] && 00979 corners[3][1] < -dims[1] ) 00980 return false; 00981 if( corners[0][1] > dims[1] && corners[1][1] > dims[1] && corners[2][1] > dims[1] && corners[3][1] > dims[1] ) 00982 return false; 00983 // Z 00984 if( corners[0][2] < -dims[2] && corners[1][2] < -dims[2] && corners[2][2] < -dims[2] && 00985 corners[3][2] < -dims[2] ) 00986 return false; 00987 if( corners[0][2] > dims[2] && corners[1][2] > dims[2] && corners[2][2] > dims[2] && corners[3][2] > dims[2] ) 00988 return false; 00989 00990 // 3) test element face normals 00991 CartVect norm; 00992 double dot, dot1, dot2; 00993 00994 const CartVect v01 = corners[1] - corners[0]; 00995 const CartVect v02 = corners[2] - corners[0]; 00996 norm = v01 * v02; 00997 dot = dot_abs( norm, dims ); 00998 dot1 = norm % corners[0]; 00999 dot2 = norm % corners[3]; 01000 if( dot1 > dot2 ) std::swap( dot1, dot2 ); 01001 if( dot2 < -dot || dot1 > dot ) return false; 01002 01003 const CartVect v03 = corners[3] - corners[0]; 01004 norm = v03 * v01; 01005 dot = dot_abs( norm, dims ); 01006 dot1 = norm % corners[0]; 01007 dot2 = norm % corners[2]; 01008 if( dot1 > dot2 ) std::swap( dot1, dot2 ); 01009 if( dot2 < -dot || dot1 > dot ) return false; 01010 01011 norm = v02 * v03; 01012 dot = dot_abs( norm, dims ); 01013 dot1 = norm % corners[0]; 01014 dot2 = norm % corners[1]; 01015 if( dot1 > dot2 ) std::swap( dot1, dot2 ); 01016 if( dot2 < -dot || dot1 > dot ) return false; 01017 01018 const CartVect v12 = corners[2] - corners[1]; 01019 const CartVect v13 = corners[3] - corners[1]; 01020 norm = v13 * v12; 01021 dot = dot_abs( norm, dims ); 01022 dot1 = norm % corners[0]; 01023 dot2 = norm % corners[1]; 01024 if( dot1 > dot2 ) std::swap( dot1, dot2 ); 01025 if( dot2 < -dot || dot1 > dot ) return false; 01026 01027 // 2) test edge-edge cross products 01028 01029 const CartVect v23 = corners[3] - corners[2]; 01030 return box_tet_overlap_edge( dims, v01, corners[0], corners[2], corners[3] ) && 01031 box_tet_overlap_edge( dims, v02, corners[0], corners[1], corners[3] ) && 01032 box_tet_overlap_edge( dims, v03, corners[0], corners[1], corners[2] ) && 01033 box_tet_overlap_edge( dims, v12, corners[1], corners[0], corners[3] ) && 01034 box_tet_overlap_edge( dims, v13, corners[1], corners[0], corners[2] ) && 01035 box_tet_overlap_edge( dims, v23, corners[2], corners[0], corners[1] ); 01036 } 01037 01038 // from: 01039 // http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf#search=%22closest%20point%20on%20triangle%22 01040 /* t 01041 * \(2)^ 01042 * \ | 01043 * \ | 01044 * \| 01045 * \ 01046 * |\ 01047 * | \ 01048 * | \ (1) 01049 * (3) tv \ 01050 * | \ 01051 * | (0) \ 01052 * | \ 01053 *-------+---sv--\----> s 01054 * | \ (6) 01055 * (4) | (5) \ 01056 */ 01057 // Worst case is either 61 flops and 5 compares or 53 flops and 6 compares, 01058 // depending on relative costs. For all paths that do not return one of the 01059 // corner vertices, exactly one of the flops is a divide. 01060 void closest_location_on_tri( const CartVect& location, const CartVect* vertices, CartVect& closest_out ) 01061 { // ops comparisons 01062 const CartVect sv( vertices[1] - vertices[0] ); // +3 = 3 01063 const CartVect tv( vertices[2] - vertices[0] ); // +3 = 6 01064 const CartVect pv( vertices[0] - location ); // +3 = 9 01065 const double ss = sv % sv; // +5 = 14 01066 const double st = sv % tv; // +5 = 19 01067 const double tt = tv % tv; // +5 = 24 01068 const double sp = sv % pv; // +5 = 29 01069 const double tp = tv % pv; // +5 = 34 01070 const double det = ss * tt - st * st; // +3 = 37 01071 double s = st * tp - tt * sp; // +3 = 40 01072 double t = st * sp - ss * tp; // +3 = 43 01073 if( s + t < det ) 01074 { // +1 = 44, +1 = 1 01075 if( s < 0 ) 01076 { // +1 = 2 01077 if( t < 0 ) 01078 { // +1 = 3 01079 // region 4 01080 if( sp < 0 ) 01081 { // +1 = 4 01082 if( -sp > ss ) // +1 = 5 01083 closest_out = vertices[1]; // 44 5 01084 else 01085 closest_out = vertices[0] - ( sp / ss ) * sv; // +7 = 51, 5 01086 } 01087 else if( tp < 0 ) 01088 { // +1 = 5 01089 if( -tp > tt ) // +1 = 6 01090 closest_out = vertices[2]; // 44, 6 01091 else 01092 closest_out = vertices[0] - ( tp / tt ) * tv; // +7 = 51, 6 01093 } 01094 else 01095 { 01096 closest_out = vertices[0]; // 44, 5 01097 } 01098 } 01099 else 01100 { 01101 // region 3 01102 if( tp >= 0 ) // +1 = 4 01103 closest_out = vertices[0]; // 44, 4 01104 else if( -tp >= tt ) // +1 = 5 01105 closest_out = vertices[2]; // 44, 5 01106 else 01107 closest_out = vertices[0] - ( tp / tt ) * tv; // +7 = 51, 5 01108 } 01109 } 01110 else if( t < 0 ) 01111 { // +1 = 3 01112 // region 5; 01113 if( sp >= 0.0 ) // +1 = 4 01114 closest_out = vertices[0]; // 44, 4 01115 else if( -sp >= ss ) // +1 = 5 01116 closest_out = vertices[1]; // 44 5 01117 else 01118 closest_out = vertices[0] - ( sp / ss ) * sv; // +7 = 51, 5 01119 } 01120 else 01121 { 01122 // region 0 01123 const double inv_det = 1.0 / det; // +1 = 45 01124 s *= inv_det; // +1 = 46 01125 t *= inv_det; // +1 = 47 01126 closest_out = vertices[0] + s * sv + t * tv; //+12 = 59, 3 01127 } 01128 } 01129 else 01130 { 01131 if( s < 0 ) 01132 { // +1 = 2 01133 // region 2 01134 s = st + sp; // +1 = 45 01135 t = tt + tp; // +1 = 46 01136 if( t > s ) 01137 { // +1 = 3 01138 const double num = t - s; // +1 = 47 01139 const double den = ss - 2 * st + tt; // +3 = 50 01140 if( num > den ) // +1 = 4 01141 closest_out = vertices[1]; // 50, 4 01142 else 01143 { 01144 s = num / den; // +1 = 51 01145 t = 1 - s; // +1 = 52 01146 closest_out = s * vertices[1] + t * vertices[2]; // +9 = 61, 4 01147 } 01148 } 01149 else if( t <= 0 ) // +1 = 4 01150 closest_out = vertices[2]; // 46, 4 01151 else if( tp >= 0 ) // +1 = 5 01152 closest_out = vertices[0]; // 46, 5 01153 else 01154 closest_out = vertices[0] - ( tp / tt ) * tv; // +7 = 53, 5 01155 } 01156 else if( t < 0 ) 01157 { // +1 = 3 01158 // region 6 01159 t = st + tp; // +1 = 45 01160 s = ss + sp; // +1 = 46 01161 if( s > t ) 01162 { // +1 = 4 01163 const double num = t - s; // +1 = 47 01164 const double den = tt - 2 * st + ss; // +3 = 50 01165 if( num > den ) // +1 = 5 01166 closest_out = vertices[2]; // 50, 5 01167 else 01168 { 01169 t = num / den; // +1 = 51 01170 s = 1 - t; // +1 = 52 01171 closest_out = s * vertices[1] + t * vertices[2]; // +9 = 61, 5 01172 } 01173 } 01174 else if( s <= 0 ) // +1 = 5 01175 closest_out = vertices[1]; // 46, 5 01176 else if( sp >= 0 ) // +1 = 6 01177 closest_out = vertices[0]; // 46, 6 01178 else 01179 closest_out = vertices[0] - ( sp / ss ) * sv; // +7 = 53, 6 01180 } 01181 else 01182 { 01183 // region 1 01184 const double num = tt + tp - st - sp; // +3 = 47 01185 if( num <= 0 ) 01186 { // +1 = 4 01187 closest_out = vertices[2]; // 47, 4 01188 } 01189 else 01190 { 01191 const double den = ss - 2 * st + tt; // +3 = 50 01192 if( num >= den ) // +1 = 5 01193 closest_out = vertices[1]; // 50, 5 01194 else 01195 { 01196 s = num / den; // +1 = 51 01197 t = 1 - s; // +1 = 52 01198 closest_out = s * vertices[1] + t * vertices[2]; // +9 = 61, 5 01199 } 01200 } 01201 } 01202 } 01203 } 01204 01205 void closest_location_on_tri( const CartVect& location, 01206 const CartVect* vertices, 01207 double tolerance, 01208 CartVect& closest_out, 01209 int& closest_topo ) 01210 { 01211 const double tsqr = tolerance * tolerance; 01212 int i; 01213 CartVect pv[3], ev, ep; 01214 double t; 01215 01216 closest_location_on_tri( location, vertices, closest_out ); 01217 01218 for( i = 0; i < 3; ++i ) 01219 { 01220 pv[i] = vertices[i] - closest_out; 01221 if( ( pv[i] % pv[i] ) <= tsqr ) 01222 { 01223 closest_topo = i; 01224 return; 01225 } 01226 } 01227 01228 for( i = 0; i < 3; ++i ) 01229 { 01230 ev = vertices[( i + 1 ) % 3] - vertices[i]; 01231 t = ( ev % pv[i] ) / ( ev % ev ); 01232 ep = closest_out - ( vertices[i] + t * ev ); 01233 if( ( ep % ep ) <= tsqr ) 01234 { 01235 closest_topo = i + 3; 01236 return; 01237 } 01238 } 01239 01240 closest_topo = 6; 01241 } 01242 01243 // We assume polygon is *convex*, but *not* planar. 01244 void closest_location_on_polygon( const CartVect& location, 01245 const CartVect* vertices, 01246 int num_vertices, 01247 CartVect& closest_out ) 01248 { 01249 const int n = num_vertices; 01250 CartVect d, p, v; 01251 double shortest_sqr, dist_sqr, t_closest, t; 01252 int i, e; 01253 01254 // Find closest edge of polygon. 01255 e = n - 1; 01256 v = vertices[0] - vertices[e]; 01257 t_closest = ( v % ( location - vertices[e] ) ) / ( v % v ); 01258 if( t_closest < 0.0 ) 01259 d = location - vertices[e]; 01260 else if( t_closest > 1.0 ) 01261 d = location - vertices[0]; 01262 else 01263 d = location - vertices[e] - t_closest * v; 01264 shortest_sqr = d % d; 01265 for( i = 0; i < n - 1; ++i ) 01266 { 01267 v = vertices[i + 1] - vertices[i]; 01268 t = ( v % ( location - vertices[i] ) ) / ( v % v ); 01269 if( t < 0.0 ) 01270 d = location - vertices[i]; 01271 else if( t > 1.0 ) 01272 d = location - vertices[i + 1]; 01273 else 01274 d = location - vertices[i] - t * v; 01275 dist_sqr = d % d; 01276 if( dist_sqr < shortest_sqr ) 01277 { 01278 e = i; 01279 shortest_sqr = dist_sqr; 01280 t_closest = t; 01281 } 01282 } 01283 01284 // If we are beyond the bounds of the edge, then 01285 // the point is outside and closest to a vertex 01286 if( t_closest <= 0.0 ) 01287 { 01288 closest_out = vertices[e]; 01289 return; 01290 } 01291 else if( t_closest >= 1.0 ) 01292 { 01293 closest_out = vertices[( e + 1 ) % n]; 01294 return; 01295 } 01296 01297 // Now check which side of the edge we are one 01298 const CartVect v0 = vertices[e] - vertices[( e + n - 1 ) % n]; 01299 const CartVect v1 = vertices[( e + 1 ) % n] - vertices[e]; 01300 const CartVect v2 = vertices[( e + 2 ) % n] - vertices[( e + 1 ) % n]; 01301 const CartVect norm = ( 1.0 - t_closest ) * ( v0 * v1 ) + t_closest * ( v1 * v2 ); 01302 // if on outside of edge, result is closest point on edge 01303 if( ( norm % ( ( vertices[e] - location ) * v1 ) ) <= 0.0 ) 01304 { 01305 closest_out = vertices[e] + t_closest * v1; 01306 return; 01307 } 01308 01309 // Inside. Project to plane defined by point and normal at 01310 // closest edge 01311 const double D = -( norm % ( vertices[e] + t_closest * v1 ) ); 01312 closest_out = ( location - ( norm % location + D ) * norm ) / ( norm % norm ); 01313 } 01314 01315 void closest_location_on_box( const CartVect& min, const CartVect& max, const CartVect& point, CartVect& closest ) 01316 { 01317 closest[0] = point[0] < min[0] ? min[0] : point[0] > max[0] ? max[0] : point[0]; 01318 closest[1] = point[1] < min[1] ? min[1] : point[1] > max[1] ? max[1] : point[1]; 01319 closest[2] = point[2] < min[2] ? min[2] : point[2] > max[2] ? max[2] : point[2]; 01320 } 01321 01322 bool box_point_overlap( const CartVect& box_min_corner, 01323 const CartVect& box_max_corner, 01324 const CartVect& point, 01325 double tolerance ) 01326 { 01327 CartVect closest; 01328 closest_location_on_box( box_min_corner, box_max_corner, point, closest ); 01329 closest -= point; 01330 return closest % closest < tolerance * tolerance; 01331 } 01332 01333 bool boxes_overlap( const CartVect& box_min1, 01334 const CartVect& box_max1, 01335 const CartVect& box_min2, 01336 const CartVect& box_max2, 01337 double tolerance ) 01338 { 01339 01340 for( int k = 0; k < 3; k++ ) 01341 { 01342 double b1min = box_min1[k], b1max = box_max1[k]; 01343 double b2min = box_min2[k], b2max = box_max2[k]; 01344 if( b1min - tolerance > b2max ) return false; 01345 if( b2min - tolerance > b1max ) return false; 01346 } 01347 return true; 01348 } 01349 01350 // see if boxes formed by 2 lists of "CartVect"s overlap 01351 bool bounding_boxes_overlap( const CartVect* list1, int num1, const CartVect* list2, int num2, double tolerance ) 01352 { 01353 assert( num1 >= 1 && num2 >= 1 ); 01354 CartVect box_min1 = list1[0], box_max1 = list1[0]; 01355 CartVect box_min2 = list2[0], box_max2 = list2[0]; 01356 for( int i = 1; i < num1; i++ ) 01357 { 01358 for( int k = 0; k < 3; k++ ) 01359 { 01360 double val = list1[i][k]; 01361 if( box_min1[k] > val ) box_min1[k] = val; 01362 if( box_max1[k] < val ) box_max1[k] = val; 01363 } 01364 } 01365 for( int i = 1; i < num2; i++ ) 01366 { 01367 for( int k = 0; k < 3; k++ ) 01368 { 01369 double val = list2[i][k]; 01370 if( box_min2[k] > val ) box_min2[k] = val; 01371 if( box_max2[k] < val ) box_max2[k] = val; 01372 } 01373 } 01374 01375 return boxes_overlap( box_min1, box_max1, box_min2, box_max2, tolerance ); 01376 } 01377 01378 // see if boxes formed by 2 lists of 2d coordinates overlap (num1>=3, num2>=3, do not check) 01379 bool bounding_boxes_overlap_2d( const double* list1, int num1, const double* list2, int num2, double tolerance ) 01380 { 01381 /* 01382 * box1: 01383 * (bmax11, bmax12) 01384 * |-------| 01385 * | | 01386 * |-------| 01387 * (bmin11, bmin12) 01388 01389 * box2: 01390 * (bmax21, bmax22) 01391 * |----------| 01392 * | | 01393 * |----------| 01394 * (bmin21, bmin22) 01395 */ 01396 double bmin11, bmax11, bmin12, bmax12; 01397 bmin11 = bmax11 = list1[0]; 01398 bmin12 = bmax12 = list1[1]; 01399 01400 double bmin21, bmax21, bmin22, bmax22; 01401 bmin21 = bmax21 = list2[0]; 01402 bmin22 = bmax22 = list2[1]; 01403 01404 for( int i = 1; i < num1; i++ ) 01405 { 01406 if( bmin11 > list1[2 * i] ) bmin11 = list1[2 * i]; 01407 if( bmax11 < list1[2 * i] ) bmax11 = list1[2 * i]; 01408 if( bmin12 > list1[2 * i + 1] ) bmin12 = list1[2 * i + 1]; 01409 if( bmax12 < list1[2 * i + 1] ) bmax12 = list1[2 * i + 1]; 01410 } 01411 for( int i = 1; i < num2; i++ ) 01412 { 01413 if( bmin21 > list2[2 * i] ) bmin21 = list2[2 * i]; 01414 if( bmax21 < list2[2 * i] ) bmax21 = list2[2 * i]; 01415 if( bmin22 > list2[2 * i + 1] ) bmin22 = list2[2 * i + 1]; 01416 if( bmax22 < list2[2 * i + 1] ) bmax22 = list2[2 * i + 1]; 01417 } 01418 01419 if( ( bmax11 < bmin21 + tolerance ) || ( bmax21 < bmin11 + tolerance ) ) return false; 01420 01421 if( ( bmax12 < bmin22 + tolerance ) || ( bmax22 < bmin12 + tolerance ) ) return false; 01422 01423 return true; 01424 } 01425 01426 /**\brief Class representing a 3-D mapping function (e.g. shape function for volume element) */ 01427 class VolMap 01428 { 01429 public: 01430 /**\brief Return \f$\vec \xi\f$ corresponding to logical center of element */ 01431 virtual CartVect center_xi() const = 0; 01432 /**\brief Evaluate mapping function (calculate \f$\vec x = F($\vec \xi)\f$ )*/ 01433 virtual CartVect evaluate( const CartVect& xi ) const = 0; 01434 /**\brief Evaluate Jacobian of mapping function */ 01435 virtual Matrix3 jacobian( const CartVect& xi ) const = 0; 01436 /**\brief Evaluate inverse of mapping function (calculate \f$\vec \xi = F^-1($\vec x)\f$ )*/ 01437 bool solve_inverse( const CartVect& x, CartVect& xi, double tol ) const; 01438 }; 01439 01440 bool VolMap::solve_inverse( const CartVect& x, CartVect& xi, double tol ) const 01441 { 01442 const double error_tol_sqr = tol * tol; 01443 double det; 01444 xi = center_xi(); 01445 CartVect delta = evaluate( xi ) - x; 01446 Matrix3 J; 01447 while( delta % delta > error_tol_sqr ) 01448 { 01449 J = jacobian( xi ); 01450 det = J.determinant(); 01451 if( det < std::numeric_limits< double >::epsilon() ) return false; 01452 xi -= J.inverse() * delta; 01453 delta = evaluate( xi ) - x; 01454 } 01455 return true; 01456 } 01457 01458 /**\brief Shape function for trilinear hexahedron */ 01459 class LinearHexMap : public VolMap 01460 { 01461 public: 01462 LinearHexMap( const CartVect* corner_coords ) : corners( corner_coords ) {} 01463 virtual CartVect center_xi() const; 01464 virtual CartVect evaluate( const CartVect& xi ) const; 01465 virtual Matrix3 jacobian( const CartVect& xi ) const; 01466 01467 private: 01468 const CartVect* corners; 01469 static const double corner_xi[8][3]; 01470 }; 01471 01472 const double LinearHexMap::corner_xi[8][3] = { { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 }, { -1, 1, -1 }, 01473 { -1, -1, 1 }, { 1, -1, 1 }, { 1, 1, 1 }, { -1, 1, 1 } }; 01474 CartVect LinearHexMap::center_xi() const 01475 { 01476 return CartVect( 0.0 ); 01477 } 01478 01479 CartVect LinearHexMap::evaluate( const CartVect& xi ) const 01480 { 01481 CartVect x( 0.0 ); 01482 for( unsigned i = 0; i < 8; ++i ) 01483 { 01484 const double N_i = 01485 ( 1 + xi[0] * corner_xi[i][0] ) * ( 1 + xi[1] * corner_xi[i][1] ) * ( 1 + xi[2] * corner_xi[i][2] ); 01486 x += N_i * corners[i]; 01487 } 01488 x *= 0.125; 01489 return x; 01490 } 01491 01492 Matrix3 LinearHexMap::jacobian( const CartVect& xi ) const 01493 { 01494 Matrix3 J( 0.0 ); 01495 for( unsigned i = 0; i < 8; ++i ) 01496 { 01497 const double xi_p = 1 + xi[0] * corner_xi[i][0]; 01498 const double eta_p = 1 + xi[1] * corner_xi[i][1]; 01499 const double zeta_p = 1 + xi[2] * corner_xi[i][2]; 01500 const double dNi_dxi = corner_xi[i][0] * eta_p * zeta_p; 01501 const double dNi_deta = corner_xi[i][1] * xi_p * zeta_p; 01502 const double dNi_dzeta = corner_xi[i][2] * xi_p * eta_p; 01503 J( 0, 0 ) += dNi_dxi * corners[i][0]; 01504 J( 1, 0 ) += dNi_dxi * corners[i][1]; 01505 J( 2, 0 ) += dNi_dxi * corners[i][2]; 01506 J( 0, 1 ) += dNi_deta * corners[i][0]; 01507 J( 1, 1 ) += dNi_deta * corners[i][1]; 01508 J( 2, 1 ) += dNi_deta * corners[i][2]; 01509 J( 0, 2 ) += dNi_dzeta * corners[i][0]; 01510 J( 1, 2 ) += dNi_dzeta * corners[i][1]; 01511 J( 2, 2 ) += dNi_dzeta * corners[i][2]; 01512 } 01513 return J *= 0.125; 01514 } 01515 01516 bool nat_coords_trilinear_hex( const CartVect* corner_coords, const CartVect& x, CartVect& xi, double tol ) 01517 { 01518 return LinearHexMap( corner_coords ).solve_inverse( x, xi, tol ); 01519 } 01520 01521 bool point_in_trilinear_hex( const CartVect* hex, const CartVect& xyz, double etol ) 01522 { 01523 CartVect xi; 01524 return nat_coords_trilinear_hex( hex, xyz, xi, etol ) && fabs( xi[0] ) - 1 < etol && fabs( xi[1] ) - 1 < etol && 01525 fabs( xi[2] ) - 1 < etol; 01526 } 01527 01528 } // namespace GeomUtil 01529 01530 } // namespace moab