![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
#include <LinearTri.hpp>
Static Public Member Functions | |
static ErrorCode | evalFcn (const double *params, const double *field, const int ndim, const int num_tuples, double *work, double *result) |
Forward-evaluation of field at parametric coordinates. | |
static ErrorCode | reverseEvalFcn (EvalFcn eval, JacobianFcn jacob, InsideFcn ins, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *is_inside) |
Reverse-evaluation of parametric coordinates at physical space position. | |
static ErrorCode | normalFcn (const int ientDim, const int facet, const int nverts, const double *verts, double normal[]) |
Evaluate the normal at a specified facet. | |
static ErrorCode | jacobianFcn (const double *params, const double *verts, const int nverts, const int ndim, double *work, double *result) |
Evaluate the jacobian at a specified parametric position. | |
static ErrorCode | integrateFcn (const double *field, const double *verts, const int nverts, const int ndim, const int num_tuples, double *work, double *result) |
Forward-evaluation of field at parametric coordinates. | |
static ErrorCode | initFcn (const double *verts, const int nverts, double *&work) |
Initialize this EvalSet. | |
static int | insideFcn (const double *params, const int ndim, const double tol) |
Function that returns whether or not the parameters are inside the natural space of the element. | |
static ErrorCode | evaluate_reverse (EvalFcn eval, JacobianFcn jacob, InsideFcn inside_f, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *inside) |
static EvalSet | eval_set () |
static bool | compatible (EntityType tp, int numv, EvalSet &eset) |
Static Protected Attributes | |
static const double | corner [3][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 } } |
Definition at line 12 of file LinearTri.hpp.
static bool moab::LinearTri::compatible | ( | EntityType | tp, |
int | numv, | ||
EvalSet & | eset | ||
) | [inline, static] |
Definition at line 86 of file LinearTri.hpp.
References eval_set(), and MBTRI.
Referenced by moab::EvalSet::get_eval_set().
{
if( tp == MBTRI && numv >= 3 )
{
eset = eval_set();
return true;
}
else
return false;
}
static EvalSet moab::LinearTri::eval_set | ( | ) | [inline, static] |
Definition at line 81 of file LinearTri.hpp.
Referenced by compatible().
{
return EvalSet( evalFcn, reverseEvalFcn, normalFcn, jacobianFcn, integrateFcn, initFcn, insideFcn );
}
ErrorCode moab::LinearTri::evalFcn | ( | const double * | params, |
const double * | field, | ||
const int | ndim, | ||
const int | num_tuples, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Forward-evaluation of field at parametric coordinates.
Definition at line 43 of file LinearTri.cpp.
References MB_SUCCESS.
{
assert( params && field && num_tuples > 0 );
// convert to [0,1]
double p1 = 0.5 * ( 1.0 + params[0] ), p2 = 0.5 * ( 1.0 + params[1] ), p0 = 1.0 - p1 - p2;
for( int j = 0; j < num_tuples; j++ )
result[j] = p0 * field[0 * num_tuples + j] + p1 * field[1 * num_tuples + j] + p2 * field[2 * num_tuples + j];
return MB_SUCCESS;
}
ErrorCode moab::LinearTri::evaluate_reverse | ( | EvalFcn | eval, |
JacobianFcn | jacob, | ||
InsideFcn | inside_f, | ||
const double * | posn, | ||
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const double | iter_tol, | ||
const double | inside_tol, | ||
double * | work, | ||
double * | params, | ||
int * | inside | ||
) | [static] |
Definition at line 113 of file LinearTri.cpp.
References moab::CartVect::array(), moab::Matrix3::determinant(), ErrorCode, moab::Matrix3::inverse(), length_squared(), and MB_SUCCESS.
Referenced by reverseEvalFcn().
{
// TODO: should differentiate between epsilons used for
// Newton Raphson iteration, and epsilons used for curved boundary geometry errors
// right now, fix the tolerance used for NR
const double error_tol_sqr = iter_tol * iter_tol;
CartVect* cvparams = reinterpret_cast< CartVect* >( params );
const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn );
// find best initial guess to improve convergence
CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ) };
double resl = std::numeric_limits< double >::max();
CartVect new_pos, tmp_pos;
ErrorCode rval;
for( unsigned int i = 0; i < 3; i++ )
{
rval = ( *eval )( tmp_params[i].array(), verts, ndim, 3, work, tmp_pos.array() );
if( MB_SUCCESS != rval ) return rval;
double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
if( tmp_resl < resl )
{
*cvparams = tmp_params[i];
new_pos = tmp_pos;
resl = tmp_resl;
}
}
// residual is diff between old and new pos; need to minimize that
CartVect res = new_pos - *cvposn;
Matrix3 J;
rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J[0] );
#ifndef NDEBUG
double det = J.determinant();
assert( det > std::numeric_limits< double >::epsilon() );
#endif
Matrix3 Ji = J.inverse();
int iters = 0;
// while |res| larger than tol
while( res % res > error_tol_sqr )
{
if( ++iters > 25 ) return MB_FAILURE;
// new params tries to eliminate residual
*cvparams -= Ji * res;
// get the new forward-evaluated position, and its difference from the target pt
rval = ( *eval )( params, verts, ndim, 3, work, new_pos.array() );
if( MB_SUCCESS != rval ) return rval;
res = new_pos - *cvposn;
}
if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );
return MB_SUCCESS;
} // Map::evaluate_reverse()
ErrorCode moab::LinearTri::initFcn | ( | const double * | verts, |
const int | nverts, | ||
double *& | work | ||
) | [static] |
Initialize this EvalSet.
Definition at line 12 of file LinearTri.cpp.
References moab::Matrix3::copyto(), moab::Matrix3::determinant(), moab::Matrix3::inverse(), MB_SUCCESS, and moab::Matrix3::size.
{
// allocate work array as:
// work[0..8] = T
// work[9..17] = Tinv
// work[18] = detT
// work[19] = detTinv
if( nverts != 3 )
{
std::cout << "Invalid Triangle. Expected 3 vertices.\n";
return MB_FAILURE;
}
assert( verts );
Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 0.0,
verts[1 * 3 + 1] - verts[0 * 3 + 1], verts[2 * 3 + 1] - verts[0 * 3 + 1], 0.0,
verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 1.0 );
J *= 0.5;
// Update the work array
if( !work ) work = new double[20];
J.copyto( work );
J.inverse().copyto( work + Matrix3::size );
work[18] = J.determinant();
work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );
return MB_SUCCESS;
}
int moab::LinearTri::insideFcn | ( | const double * | params, |
const int | ndim, | ||
const double | tol | ||
) | [static] |
Function that returns whether or not the parameters are inside the natural space of the element.
Definition at line 108 of file LinearTri.cpp.
{
return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[0] + params[1] <= 1.0 + tol );
}
ErrorCode moab::LinearTri::integrateFcn | ( | const double * | field, |
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const int | num_tuples, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Forward-evaluation of field at parametric coordinates.
Definition at line 60 of file LinearTri.cpp.
References MB_SUCCESS.
{
assert( field && num_tuples > 0 );
std::fill( result, result + num_tuples, 0.0 );
for( int i = 0; i < nverts; ++i )
{
for( int j = 0; j < num_tuples; j++ )
result[j] += field[i * num_tuples + j];
}
double tmp = work[18] / 6.0;
for( int i = 0; i < num_tuples; i++ )
result[i] *= tmp;
return MB_SUCCESS;
}
ErrorCode moab::LinearTri::jacobianFcn | ( | const double * | params, |
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Evaluate the jacobian at a specified parametric position.
Definition at line 82 of file LinearTri.cpp.
References MB_SUCCESS.
{
// jacobian is cached in work array
assert( work );
std::copy( work, work + 9, result );
return MB_SUCCESS;
}
ErrorCode moab::LinearTri::normalFcn | ( | const int | ientDim, |
const int | facet, | ||
const int | nverts, | ||
const double * | verts, | ||
double | normal[] | ||
) | [static] |
Evaluate the normal at a specified facet.
Definition at line 194 of file LinearTri.cpp.
References moab::CN::ConnMap::conn, MB_SET_ERR, MB_SUCCESS, MBTRI, and moab::CN::mConnectivityMap.
{
// assert(facet < 3 && ientDim == 1 && nverts==3);
if( nverts != 3 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed triangle :: expected value = 3 " );
if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " );
if( facet > 3 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-2" );
// Get the local vertex ids of local edge
int id0 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][0];
int id1 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][1];
// Find a vector along the edge
double edge[3];
for( int i = 0; i < 3; i++ )
{
edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
}
// Find the normal of the face
double x0[3], x1[3], fnrm[3];
for( int i = 0; i < 3; i++ )
{
x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i];
x1[i] = verts[3 * 2 + i] - verts[3 * 0 + i];
}
fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2];
fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2];
fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1];
// Find the normal of the edge as the cross product of edge and face normal
double a = edge[1] * fnrm[2] - fnrm[1] * edge[2];
double b = edge[2] * fnrm[0] - fnrm[2] * edge[0];
double c = edge[0] * fnrm[1] - fnrm[0] * edge[1];
double nrm = sqrt( a * a + b * b + c * c );
if( nrm > std::numeric_limits< double >::epsilon() )
{
normal[0] = a / nrm;
normal[1] = b / nrm;
normal[2] = c / nrm;
}
return MB_SUCCESS;
}
ErrorCode moab::LinearTri::reverseEvalFcn | ( | EvalFcn | eval, |
JacobianFcn | jacob, | ||
InsideFcn | ins, | ||
const double * | posn, | ||
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const double | iter_tol, | ||
const double | inside_tol, | ||
double * | work, | ||
double * | params, | ||
int * | is_inside | ||
) | [static] |
Reverse-evaluation of parametric coordinates at physical space position.
Definition at line 90 of file LinearTri.cpp.
References evaluate_reverse().
{
assert( posn && verts );
return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
is_inside );
}
const double moab::LinearTri::corner = { { 0, 0 }, { 1, 0 }, { 0, 1 } } [static, protected] |
Definition at line 98 of file LinearTri.hpp.