Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
#include <LinearTet.hpp>
Static Public Member Functions | |
static ErrorCode | evalFcn (const double *params, const double *field, const int ndim, const int num_tuples, double *work, double *result) |
Forward-evaluation of field at parametric coordinates. | |
static ErrorCode | reverseEvalFcn (EvalFcn eval, JacobianFcn jacob, InsideFcn ins, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *is_inside) |
Reverse-evaluation of parametric coordinates at physical space position. | |
static ErrorCode | normalFcn (const int ientDim, const int facet, const int nverts, const double *verts, double normal[]) |
Evaluate the normal at a specified facet. | |
static ErrorCode | jacobianFcn (const double *params, const double *verts, const int nverts, const int ndim, double *work, double *result) |
Evaluate the jacobian at a specified parametric position. | |
static ErrorCode | integrateFcn (const double *field, const double *verts, const int nverts, const int ndim, const int num_tuples, double *work, double *result) |
Forward-evaluation of field at parametric coordinates. | |
static ErrorCode | initFcn (const double *verts, const int nverts, double *&work) |
Initialize this EvalSet. | |
static int | insideFcn (const double *params, const int ndim, const double tol) |
Function that returns whether or not the parameters are inside the natural space of the element. | |
static ErrorCode | evaluate_reverse (EvalFcn eval, JacobianFcn jacob, InsideFcn inside_f, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *inside) |
static EvalSet | eval_set () |
static bool | compatible (EntityType tp, int numv, EvalSet &eset) |
Static Protected Attributes | |
static const double | corner [4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } } |
Definition at line 12 of file LinearTet.hpp.
static bool moab::LinearTet::compatible | ( | EntityType | tp, |
int | numv, | ||
EvalSet & | eset | ||
) | [inline, static] |
Definition at line 86 of file LinearTet.hpp.
References eval_set(), and MBTET.
Referenced by moab::EvalSet::get_eval_set().
static EvalSet moab::LinearTet::eval_set | ( | ) | [inline, static] |
Definition at line 81 of file LinearTet.hpp.
Referenced by compatible().
{ return EvalSet( evalFcn, reverseEvalFcn, normalFcn, jacobianFcn, integrateFcn, initFcn, insideFcn ); }
ErrorCode moab::LinearTet::evalFcn | ( | const double * | params, |
const double * | field, | ||
const int | ndim, | ||
const int | num_tuples, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Forward-evaluation of field at parametric coordinates.
Definition at line 44 of file LinearTet.cpp.
References MB_SUCCESS.
{ assert( params && field && num_tuples > 0 ); std::vector< double > f0( num_tuples ); std::copy( field, field + num_tuples, f0.begin() ); std::copy( field, field + num_tuples, result ); for( unsigned i = 1; i < 4; ++i ) { double p = 0.5 * ( params[i - 1] + 1 ); // transform from -1 <= p <= 1 to 0 <= p <= 1 for( int j = 0; j < num_tuples; j++ ) result[j] += ( field[i * num_tuples + j] - f0[j] ) * p; } return MB_SUCCESS; }
ErrorCode moab::LinearTet::evaluate_reverse | ( | EvalFcn | eval, |
JacobianFcn | jacob, | ||
InsideFcn | inside_f, | ||
const double * | posn, | ||
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const double | iter_tol, | ||
const double | inside_tol, | ||
double * | work, | ||
double * | params, | ||
int * | inside | ||
) | [static] |
Definition at line 120 of file LinearTet.cpp.
References moab::CartVect::array(), moab::Matrix3::array(), moab::Matrix3::determinant(), moab::dum, ErrorCode, moab::Matrix3::inverse(), length_squared(), MB_INDEX_OUT_OF_RANGE, and MB_SUCCESS.
Referenced by reverseEvalFcn().
{ // TODO: should differentiate between epsilons used for // Newton Raphson iteration, and epsilons used for curved boundary geometry errors // right now, fix the tolerance used for NR const double error_tol_sqr = iter_tol * iter_tol; CartVect* cvparams = reinterpret_cast< CartVect* >( params ); const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn ); // find best initial guess to improve convergence CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ), CartVect( -1, -1, 1 ) }; double resl = std::numeric_limits< double >::max(); CartVect new_pos, tmp_pos; ErrorCode rval; for( unsigned int i = 0; i < 4; i++ ) { rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() ); if( MB_SUCCESS != rval ) return rval; double tmp_resl = ( tmp_pos - *cvposn ).length_squared(); if( tmp_resl < resl ) { *cvparams = tmp_params[i]; new_pos = tmp_pos; resl = tmp_resl; } } // residual is diff between old and new pos; need to minimize that CartVect res = new_pos - *cvposn; Matrix3 J; rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() ); #ifndef NDEBUG double det = J.determinant(); assert( det > std::numeric_limits< double >::epsilon() ); #endif Matrix3 Ji = J.inverse(); int iters = 0; // while |res| larger than tol int dum, *tmp_inside = ( inside ? inside : &dum ); while( res % res > error_tol_sqr ) { if( ++iters > 25 ) { // if we haven't converged but we're outside, that's defined as success *tmp_inside = ( *inside_f )( params, ndim, inside_tol ); if( !( *tmp_inside ) ) return MB_SUCCESS; else return MB_INDEX_OUT_OF_RANGE; } // new params tries to eliminate residual *cvparams -= Ji * res; // get the new forward-evaluated position, and its difference from the target pt rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() ); if( MB_SUCCESS != rval ) return rval; res = new_pos - *cvposn; } if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol ); return MB_SUCCESS; } // Map::evaluate_reverse()
ErrorCode moab::LinearTet::initFcn | ( | const double * | verts, |
const int | nverts, | ||
double *& | work | ||
) | [static] |
Initialize this EvalSet.
Definition at line 12 of file LinearTet.cpp.
References moab::Matrix3::copyto(), moab::Matrix3::determinant(), moab::Matrix3::inverse(), MB_SUCCESS, and moab::Matrix3::size.
{ // allocate work array as: // work[0..8] = T // work[9..17] = Tinv // work[18] = detT // work[19] = detTinv if( nverts != 4 ) { std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n"; return MB_FAILURE; } assert( verts ); Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1], verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1], verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], verts[3 * 3 + 2] - verts[0 * 3 + 2] ); // Update the work array if( !work ) work = new double[20]; J.copyto( work ); J.inverse().copyto( work + Matrix3::size ); work[18] = J.determinant(); work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] ); return MB_SUCCESS; }
int moab::LinearTet::insideFcn | ( | const double * | params, |
const int | ndim, | ||
const double | tol | ||
) | [static] |
Function that returns whether or not the parameters are inside the natural space of the element.
Definition at line 114 of file LinearTet.cpp.
{
return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol &&
params[0] + params[1] + params[2] <= 1.0 + tol );
}
ErrorCode moab::LinearTet::integrateFcn | ( | const double * | field, |
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const int | num_tuples, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Forward-evaluation of field at parametric coordinates.
Definition at line 66 of file LinearTet.cpp.
References MB_SUCCESS.
{ assert( field && num_tuples > 0 ); std::fill( result, result + num_tuples, 0.0 ); for( int i = 0; i < nverts; ++i ) { for( int j = 0; j < num_tuples; j++ ) result[j] += field[i * num_tuples + j]; } double tmp = work[18] / 24.0; for( int i = 0; i < num_tuples; i++ ) result[i] *= tmp; return MB_SUCCESS; }
ErrorCode moab::LinearTet::jacobianFcn | ( | const double * | params, |
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
double * | work, | ||
double * | result | ||
) | [static] |
Evaluate the jacobian at a specified parametric position.
Definition at line 88 of file LinearTet.cpp.
References MB_SUCCESS.
{ // jacobian is cached in work array assert( work ); std::copy( work, work + 9, result ); return MB_SUCCESS; }
ErrorCode moab::LinearTet::normalFcn | ( | const int | ientDim, |
const int | facet, | ||
const int | nverts, | ||
const double * | verts, | ||
double | normal[] | ||
) | [static] |
Evaluate the normal at a specified facet.
Definition at line 198 of file LinearTet.cpp.
References moab::CN::ConnMap::conn, MB_SET_ERR, MB_SUCCESS, MBTET, and moab::CN::mConnectivityMap.
{ // assert(facet < 4 && ientDim == 2 && nverts == 4); if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " ); if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " ); if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" ); int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0]; int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1]; int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2]; double x0[3], x1[3]; for( int i = 0; i < 3; i++ ) { x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i]; } double a = x0[1] * x1[2] - x1[1] * x0[2]; double b = x1[0] * x0[2] - x0[0] * x1[2]; double c = x0[0] * x1[1] - x1[0] * x0[1]; double nrm = sqrt( a * a + b * b + c * c ); if( nrm > std::numeric_limits< double >::epsilon() ) { normal[0] = a / nrm; normal[1] = b / nrm; normal[2] = c / nrm; } return MB_SUCCESS; }
ErrorCode moab::LinearTet::reverseEvalFcn | ( | EvalFcn | eval, |
JacobianFcn | jacob, | ||
InsideFcn | ins, | ||
const double * | posn, | ||
const double * | verts, | ||
const int | nverts, | ||
const int | ndim, | ||
const double | iter_tol, | ||
const double | inside_tol, | ||
double * | work, | ||
double * | params, | ||
int * | is_inside | ||
) | [static] |
Reverse-evaluation of parametric coordinates at physical space position.
Definition at line 96 of file LinearTet.cpp.
References evaluate_reverse().
{ assert( posn && verts ); return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, is_inside ); }
const double moab::LinearTet::corner = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } } [static, protected] |
Definition at line 98 of file LinearTet.hpp.