Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
Implement CAMAL geometry callbacks using smooth iMesh. More...
#include <SmoothFace.hpp>
Implement CAMAL geometry callbacks using smooth iMesh.
Definition at line 29 of file SmoothFace.hpp.
moab::SmoothFace::SmoothFace | ( | Interface * | mb, |
EntityHandle | surface_set, | ||
GeomTopoTool * | gTool | ||
) |
Definition at line 41 of file SmoothFace.cpp.
References _my_geomTopoTool, _obb_root, _set, moab::debug_surf_eval1, moab::GeomTopoTool::get_root(), moab::GeomTopoTool::obb_tree(), and moab::OrientedBoxTreeTool::stats().
: _markTag( 0 ), _gradientTag( 0 ), _tangentsTag( 0 ), _edgeCtrlTag( 0 ), _facetCtrlTag( 0 ), _facetEdgeCtrlTag( 0 ), _planeTag( 0 ), _mb( mb ), _set( surface_set ), _my_geomTopoTool( gTool ), _obb_root( 0 ), _evaluationsCounter( 0 ) { //_smooth_face = NULL; //_mbOut->create_meshset(MESHSET_SET, _oSet); //will contain the // get also the obb_root if( _my_geomTopoTool ) { _my_geomTopoTool->get_root( this->_set, _obb_root ); if( debug_surf_eval1 ) _my_geomTopoTool->obb_tree()->stats( _obb_root, std::cout ); } }
moab::SmoothFace::~SmoothFace | ( | ) | [virtual] |
Definition at line 56 of file SmoothFace.cpp.
{}
void moab::SmoothFace::ac_at_edge | ( | CartVect & | fac, |
CartVect & | eac, | ||
int | edge_id | ||
) | [private] |
Definition at line 1504 of file SmoothFace.cpp.
Referenced by project_to_patch().
{ double u, v, w; switch( edge_id ) { case 0: u = 0.0; v = fac[1] / ( fac[1] + fac[2] ); // v = fac.y() / (fac.y() + fac.z()); w = 1.0 - v; break; case 1: u = fac[0] / ( fac[0] + fac[2] ); // u = fac.x() / (fac.x() + fac.z()); v = 0.0; w = 1.0 - u; break; case 2: u = fac[0] / ( fac[0] + fac[1] ); // u = fac.x() / (fac.x() + fac.y()); v = 1.0 - u; w = 0.0; break; default: assert( 0 ); u = -1; // needed to eliminate warnings about used before set v = -1; // needed to eliminate warnings about used before set w = -1; // needed to eliminate warnings about used before set break; } eac[0] = u; eac[1] = v; eac[2] = w; //= CartVect(u, v, w); }
void moab::SmoothFace::adjust_bounding_box | ( | CartVect & | vect | ) | [private] |
Definition at line 565 of file SmoothFace.cpp.
References _maxim, and _minim.
Referenced by compute_internal_control_points_on_facets().
void moab::SmoothFace::append_smooth_tags | ( | std::vector< Tag > & | smoothTags | ) |
Definition at line 87 of file SmoothFace.cpp.
References _gradientTag, and _planeTag.
Referenced by moab::FBEngine::delete_smooth_tags().
{ // these are created locally, for each smooth face smoothTags.push_back( _gradientTag ); smoothTags.push_back( _planeTag ); }
double moab::SmoothFace::area | ( | ) | [virtual] |
Definition at line 58 of file SmoothFace.cpp.
References _mb, _triangles, moab::Range::begin(), moab::Range::end(), moab::Interface::get_connectivity(), moab::Interface::get_coords(), and moab::CartVect::length().
{ // find the area of this entity // assert(_smooth_face); // double area1 = _smooth_face->area(); double totArea = 0.; for( Range::iterator it = _triangles.begin(); it != _triangles.end(); ++it ) { EntityHandle tria = *it; const EntityHandle* conn3; int nnodes; _mb->get_connectivity( tria, conn3, nnodes ); // // double coords[9]; // store the coordinates for the nodes //_mb->get_coords(conn3, 3, coords); CartVect p[3]; _mb->get_coords( conn3, 3, (double*)&p[0] ); // need to compute the angles // compute angles and the normal // CartVect p1(&coords[0]), p2(&coords[3]), p3(&coords[6]); CartVect AB( p[1] - p[0] ); //(p2 - p1); CartVect BC( p[2] - p[1] ); //(p3 - p2); CartVect normal = AB * BC; totArea += normal.length() / 2; } return totArea; }
void moab::SmoothFace::bounding_box | ( | double | box_min[3], |
double | box_max[3] | ||
) | [virtual] |
ErrorCode moab::SmoothFace::compute_control_points_on_edges | ( | double | min_dot, |
Tag | edgeCtrlTag, | ||
Tag | markTag | ||
) |
Definition at line 147 of file SmoothFace.cpp.
References _edgeCtrlTag, _edges, _markTag, _mb, moab::Range::begin(), moab::Range::end(), init_bezier_edge(), MB_SUCCESS, moab::Interface::tag_get_data(), and moab::Interface::tag_set_data().
Referenced by moab::FBEngine::initializeSmoothing().
{ _edgeCtrlTag = edgeCtrlTag; _markTag = markTag; // now, compute control points for all edges that are not marked already (they are no on the // boundary!) for( Range::iterator it = _edges.begin(); it != _edges.end(); ++it ) { EntityHandle edg = *it; // is the edge marked? already computed unsigned char tagVal = 0; _mb->tag_get_data( _markTag, &edg, 1, &tagVal ); if( tagVal ) continue; // double min_dot; init_bezier_edge( edg, min_dot ); tagVal = 1; _mb->tag_set_data( _markTag, &edg, 1, &tagVal ); } return MB_SUCCESS; }
ErrorCode moab::SmoothFace::compute_internal_control_points_on_facets | ( | double | min_dot, |
Tag | facetCtrlTag, | ||
Tag | facetEdgeCtrlTag | ||
) |
Definition at line 470 of file SmoothFace.cpp.
References _edgeCtrlTag, _facetCtrlTag, _facetEdgeCtrlTag, _gradientTag, _mb, _triangles, adjust_bounding_box(), moab::Range::begin(), moab::Range::end(), ErrorCode, find_edges_orientations(), moab::Interface::get_connectivity(), moab::Interface::get_coords(), init_facet_control_points(), MB_SUCCESS, moab::Interface::tag_get_data(), and moab::Interface::tag_set_data().
Referenced by moab::FBEngine::initializeSmoothing().
{ // collect from each triangle the control points in order // _facetCtrlTag = facetCtrlTag; _facetEdgeCtrlTag = facetEdgeCtrlTag; for( Range::iterator it = _triangles.begin(); it != _triangles.end(); ++it ) { EntityHandle tri = *it; // first get connectivity, and the edges // we need a fast method to retrieve the adjacent edges to each triangle const EntityHandle* conn3; int nnodes; ErrorCode rval = _mb->get_connectivity( tri, conn3, nnodes ); assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; assert( 3 == nnodes ); // would it be easier to do CartVect vNode[3]; // position at nodes rval = _mb->get_coords( conn3, 3, (double*)&vNode[0] ); assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; // get gradients (normal) at each node of triangle CartVect NN[3]; rval = _mb->tag_get_data( _gradientTag, conn3, 3, &NN[0] ); assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; EntityHandle edges[3]; int orient[3]; // + 1 or -1, if the edge is positive or negative within the face rval = find_edges_orientations( edges, conn3, orient ); // maybe we will set it? assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; // maybe we will store some tags with edges and their orientation with respect to // a triangle; CartVect P[3][5]; CartVect N[6], G[6]; // create the linear array for control points on edges, for storage (expensive !!!) CartVect CP[9]; int index = 0; // maybe store a tag / entity handle for edges? for( int i = 0; i < 3; i++ ) { // populate P and N with the right vectors int i1 = ( i + 1 ) % 3; // the first node of the edge int i2 = ( i + 2 ) % 3; // the second node of the edge N[2 * i] = NN[i1]; N[2 * i + 1] = NN[i2]; P[i][0] = vNode[i1]; rval = _mb->tag_get_data( _edgeCtrlTag, &edges[i], 1, &( P[i][1] ) ); // if sense is -1, swap 1 and 3 control points if( orient[i] == -1 ) { CartVect tmp; tmp = P[i][1]; P[i][1] = P[i][3]; P[i][3] = tmp; } P[i][4] = vNode[i2]; for( int j = 1; j < 4; j++ ) CP[index++] = P[i][j]; // the first edge control points } // stat = facet->get_edge_control_points( P ); init_facet_control_points( N, P, G ); // what do we need to store in the tag control points? rval = _mb->tag_set_data( _facetCtrlTag, &tri, 1, &G[0] ); assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; // store here again the 9 control points on the edges rval = _mb->tag_set_data( _facetEdgeCtrlTag, &tri, 1, &CP[0] ); assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; // look at what we retrieve later // adjust the bounding box int j = 0; for( j = 0; j < 3; j++ ) adjust_bounding_box( vNode[j] ); // edge control points for( j = 0; j < 9; j++ ) adjust_bounding_box( CP[j] ); // internal facet control points for( j = 0; j < 6; j++ ) adjust_bounding_box( G[j] ); } return MB_SUCCESS; }
Definition at line 362 of file SmoothFace.cpp.
References _edges, _mb, _tangentsTag, moab::Range::begin(), moab::Range::end(), ErrorCode, moab::Interface::get_connectivity(), moab::Interface::get_coords(), MB_SUCCESS, MB_TAG_CREAT, MB_TAG_DENSE, MB_TYPE_DOUBLE, moab::CartVect::normalize(), T, moab::Interface::tag_get_handle(), and moab::Interface::tag_set_data().
Referenced by moab::FBEngine::initializeSmoothing().
{ double defTangents[6] = { 0., 0., 0., 0., 0., 0. }; ErrorCode rval = _mb->tag_get_handle( "TANGENTS", 6, MB_TYPE_DOUBLE, _tangentsTag, MB_TAG_DENSE | MB_TAG_CREAT, &defTangents ); if( MB_SUCCESS != rval ) return MB_FAILURE; // now, compute Tangents for all edges that are not on boundary, so they are not marked for( Range::iterator it = _edges.begin(); it != _edges.end(); ++it ) { EntityHandle edg = *it; int nnodes; const EntityHandle* conn2; // _mb->get_connectivity( edg, conn2, nnodes ); assert( nnodes == 2 ); CartVect P[2]; // store the coordinates for the nodes rval = _mb->get_coords( conn2, 2, (double*)&P[0] ); if( MB_SUCCESS != rval ) return rval; assert( rval == MB_SUCCESS ); CartVect T[2]; T[0] = P[1] - P[0]; T[0].normalize(); T[1] = T[0]; // _mb->tag_set_data( _tangentsTag, &edg, 1, (double*)&T[0] ); // set the tangents computed at every edge } return MB_SUCCESS; }
Definition at line 622 of file SmoothFace.cpp.
References _edgeCtrlTag, _edges, _facetCtrlTag, _mb, _set, _triangles, moab::Range::begin(), moab::Range::end(), eval_bezier_patch(), moab::Interface::id_from_handle(), and moab::Interface::tag_get_data().
{ // here, we will dump all control points from edges and facets (6 control points for each facet) // we may also create some edges; maybe later... // create a point3D file // output a Point3D file (special visit format) unsigned long setId = _mb->id_from_handle( _set ); char name[50] = { 0 }; sprintf( name, "%lucontrol.Point3D", setId ); // name should be something 2control.Point3D std::ofstream point3DFile; point3DFile.open( name ); //("control.Point3D"); point3DFile << "# x y z \n"; std::ofstream point3DEdgeFile; sprintf( name, "%lucontrolEdge.Point3D", setId ); // point3DEdgeFile.open( name ); //("controlEdge.Point3D"); point3DEdgeFile << "# x y z \n"; std::ofstream smoothPoints; sprintf( name, "%lusmooth.Point3D", setId ); // smoothPoints.open( name ); //("smooth.Point3D"); smoothPoints << "# x y z \n"; CartVect controlPoints[3]; // edge control points for( Range::iterator it = _edges.begin(); it != _edges.end(); ++it ) { EntityHandle edge = *it; _mb->tag_get_data( _edgeCtrlTag, &edge, 1, (double*)&controlPoints[0] ); for( int i = 0; i < 3; i++ ) { CartVect& c = controlPoints[i]; point3DEdgeFile << std::setprecision( 11 ) << c[0] << " " << c[1] << " " << c[2] << " \n"; } } CartVect controlTriPoints[6]; // triangle control points CartVect P_facet[3]; // result in 3 "mid" control points for( Range::iterator it2 = _triangles.begin(); it2 != _triangles.end(); ++it2 ) { EntityHandle tri = *it2; _mb->tag_get_data( _facetCtrlTag, &tri, 1, (double*)&controlTriPoints[0] ); // draw a line of points between pairs of control points int numPoints = 7; for( int n = 0; n < numPoints; n++ ) { double a = 1. * n / ( numPoints - 1 ); double b = 1.0 - a; P_facet[0] = a * controlTriPoints[3] + b * controlTriPoints[4]; // 1,2,1 P_facet[1] = a * controlTriPoints[0] + b * controlTriPoints[5]; // 1,1,2 P_facet[2] = a * controlTriPoints[1] + b * controlTriPoints[2]; for( int i = 0; i < 3; i++ ) { CartVect& c = P_facet[i]; point3DFile << std::setprecision( 11 ) << c[0] << " " << c[1] << " " << c[2] << " \n"; } } // evaluate for each triangle a lattice of points int N = 40; for( int k = 0; k <= N; k++ ) { for( int m = 0; m <= N - k; m++ ) { int n = N - m - k; CartVect areacoord( 1. * k / N, 1. * m / N, 1. * n / N ); CartVect pt; eval_bezier_patch( tri, areacoord, pt ); smoothPoints << std::setprecision( 11 ) << pt[0] << " " << pt[1] << " " << pt[2] << " \n"; } } } point3DFile.close(); smoothPoints.close(); point3DEdgeFile.close(); return; }
ErrorCode moab::SmoothFace::eval_bezier_patch | ( | EntityHandle | tri, |
CartVect & | areacoord, | ||
CartVect & | pt | ||
) |
Definition at line 748 of file SmoothFace.cpp.
References _facetCtrlTag, _facetEdgeCtrlTag, _mb, ErrorCode, moab::Interface::get_connectivity(), moab::Interface::get_coords(), MB_SUCCESS, mbcube, mbquart, mbsqr, and moab::Interface::tag_get_data().
Referenced by DumpModelControlPoints(), and project_to_patch().
{ // // interpolate internal control points CartVect gctrl_pts[6]; // get the control points facet->get_control_points( gctrl_pts ); // init_facet_control_points( N, P, G) ; // what do we need to store in the tag control points? ErrorCode rval = _mb->tag_get_data( _facetCtrlTag, &tri, 1, &gctrl_pts[0] ); // get all 6 control points assert( MB_SUCCESS == rval ); if( MB_SUCCESS != rval ) return rval; const EntityHandle* conn3 = NULL; int nnodes = 0; rval = _mb->get_connectivity( tri, conn3, nnodes ); assert( MB_SUCCESS == rval ); CartVect vN[3]; _mb->get_coords( conn3, 3, (double*)&vN[0] ); // fill the coordinates of the vertices if( fabs( areacoord[1] + areacoord[2] ) < 1.0e-6 ) { pt = vN[0]; return MB_SUCCESS; } if( fabs( areacoord[0] + areacoord[2] ) < 1.0e-6 ) { pt = vN[0]; return MB_SUCCESS; } if( fabs( areacoord[0] + areacoord[1] ) < 1.0e-6 ) { pt = vN[0]; return MB_SUCCESS; } CartVect P_facet[3]; // 2,1,1 P_facet[0] = ( 1.0e0 / ( areacoord[1] + areacoord[2] ) ) * ( areacoord[1] * gctrl_pts[3] + areacoord[2] * gctrl_pts[4] ); // 1,2,1 P_facet[1] = ( 1.0e0 / ( areacoord[0] + areacoord[2] ) ) * ( areacoord[0] * gctrl_pts[0] + areacoord[2] * gctrl_pts[5] ); // 1,1,2 P_facet[2] = ( 1.0e0 / ( areacoord[0] + areacoord[1] ) ) * ( areacoord[0] * gctrl_pts[1] + areacoord[1] * gctrl_pts[2] ); // sum the contribution from each of the control points pt = CartVect( 0. ); // set all to 0, we start adding / accumulating different parts // first edge is from node 0 to 1, index 2 in // retrieve the points, in order, and the control points on edges // store here again the 9 control points on the edges CartVect CP[9]; rval = _mb->tag_get_data( _facetEdgeCtrlTag, &tri, 1, &CP[0] ); assert( MB_SUCCESS == rval ); // CubitFacetEdge *edge; // edge = facet->edge(2);! start with edge 2, from 0-1 int k = 0; CartVect ctrl_pts[5]; // edge->control_points(facet, ctrl_pts); ctrl_pts[0] = vN[0]; // for( k = 1; k < 4; k++ ) ctrl_pts[k] = CP[k + 5]; // for edge index 2 ctrl_pts[4] = vN[1]; // // i=4; j=0; k=0; double B = mbquart( areacoord[0] ); pt += B * ctrl_pts[0]; // i=3; j=1; k=0; B = 4.0 * mbcube( areacoord[0] ) * areacoord[1]; pt += B * ctrl_pts[1]; // i=2; j=2; k=0; B = 6.0 * mbsqr( areacoord[0] ) * mbsqr( areacoord[1] ); pt += B * ctrl_pts[2]; // i=1; j=3; k=0; B = 4.0 * areacoord[0] * mbcube( areacoord[1] ); pt += B * ctrl_pts[3]; // edge = facet->edge(0); // edge->control_points(facet, ctrl_pts); // edge index 0, from 1 to 2 ctrl_pts[0] = vN[1]; // for( k = 1; k < 4; k++ ) ctrl_pts[k] = CP[k - 1]; // for edge index 0 ctrl_pts[4] = vN[2]; // // i=0; j=4; k=0; B = mbquart( areacoord[1] ); pt += B * ctrl_pts[0]; // i=0; j=3; k=1; B = 4.0 * mbcube( areacoord[1] ) * areacoord[2]; pt += B * ctrl_pts[1]; // i=0; j=2; k=2; B = 6.0 * mbsqr( areacoord[1] ) * mbsqr( areacoord[2] ); pt += B * ctrl_pts[2]; // i=0; j=1; k=3; B = 4.0 * areacoord[1] * mbcube( areacoord[2] ); pt += B * ctrl_pts[3]; // edge = facet->edge(1); // edge->control_points(facet, ctrl_pts); // edge index 1, from 2 to 0 ctrl_pts[0] = vN[2]; // for( k = 1; k < 4; k++ ) ctrl_pts[k] = CP[k + 2]; // for edge index 0 ctrl_pts[4] = vN[0]; // // i=0; j=0; k=4; B = mbquart( areacoord[2] ); pt += B * ctrl_pts[0]; // i=1; j=0; k=3; B = 4.0 * areacoord[0] * mbcube( areacoord[2] ); pt += B * ctrl_pts[1]; // i=2; j=0; k=2; B = 6.0 * mbsqr( areacoord[0] ) * mbsqr( areacoord[2] ); pt += B * ctrl_pts[2]; // i=3; j=0; k=1; B = 4.0 * mbcube( areacoord[0] ) * areacoord[2]; pt += B * ctrl_pts[3]; // i=2; j=1; k=1; B = 12.0 * mbsqr( areacoord[0] ) * areacoord[1] * areacoord[2]; pt += B * P_facet[0]; // i=1; j=2; k=1; B = 12.0 * areacoord[0] * mbsqr( areacoord[1] ) * areacoord[2]; pt += B * P_facet[1]; // i=1; j=1; k=2; B = 12.0 * areacoord[0] * areacoord[1] * mbsqr( areacoord[2] ); pt += B * P_facet[2]; return MB_SUCCESS; }
ErrorCode moab::SmoothFace::eval_bezier_patch_normal | ( | EntityHandle | facet, |
CartVect & | areacoord, | ||
CartVect & | normal | ||
) |
Definition at line 1710 of file SmoothFace.cpp.
References _facetCtrlTag, _facetEdgeCtrlTag, _gradientTag, _mb, ErrorCode, moab::Interface::get_connectivity(), MB_SUCCESS, mbcube, mbsqr, moab::CartVect::normalize(), and moab::Interface::tag_get_data().
Referenced by project_to_facets().
{ // interpolate internal control points CartVect gctrl_pts[6]; // facet->get_control_points( gctrl_pts ); ErrorCode rval = _mb->tag_get_data( _facetCtrlTag, &facet, 1, &gctrl_pts[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; // _gradientTag // get normals at points const EntityHandle* conn3 = NULL; int nnodes = 0; rval = _mb->get_connectivity( facet, conn3, nnodes ); if( MB_SUCCESS != rval ) return rval; CartVect NN[3]; rval = _mb->tag_get_data( _gradientTag, conn3, 3, &NN[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; if( fabs( areacoord[1] + areacoord[2] ) < 1.0e-6 ) { normal = NN[0]; return MB_SUCCESS; } if( fabs( areacoord[0] + areacoord[2] ) < 1.0e-6 ) { normal = NN[1]; // facet->point(1)->normal(facet); return MB_SUCCESS; } if( fabs( areacoord[0] + areacoord[1] ) < 1.0e-6 ) { normal = NN[2]; // facet->point(2)->normal(facet); return MB_SUCCESS; } // compute the hodograph of the quartic Gregory patch CartVect Nijk[10]; // hodograph(facet,areacoord,Nijk); // start copy from hodograph // CubitVector gctrl_pts[6]; // facet->get_control_points( gctrl_pts ); CartVect P_facet[3]; // 2,1,1 /*P_facet[0] = (1.0e0 / (areacoord.y() + areacoord.z())) * (areacoord.y() * gctrl_pts[3] + areacoord.z() * gctrl_pts[4]);*/ P_facet[0] = ( 1.0e0 / ( areacoord[1] + areacoord[2] ) ) * ( areacoord[1] * gctrl_pts[3] + areacoord[2] * gctrl_pts[4] ); // 1,2,1 /*P_facet[1] = (1.0e0 / (areacoord.x() + areacoord.z())) * (areacoord.x() * gctrl_pts[0] + areacoord.z() * gctrl_pts[5]);*/ P_facet[1] = ( 1.0e0 / ( areacoord[0] + areacoord[2] ) ) * ( areacoord[0] * gctrl_pts[0] + areacoord[2] * gctrl_pts[5] ); // 1,1,2 /*P_facet[2] = (1.0e0 / (areacoord.x() + areacoord.y())) * (areacoord.x() * gctrl_pts[1] + areacoord.y() * gctrl_pts[2]);*/ P_facet[2] = ( 1.0e0 / ( areacoord[0] + areacoord[1] ) ) * ( areacoord[0] * gctrl_pts[1] + areacoord[1] * gctrl_pts[2] ); // corner control points are just the normals at the points // 3, 0, 0 Nijk[0] = NN[0]; // 0, 3, 0 Nijk[3] = NN[1]; // 0, 0, 3 Nijk[9] = NN[2]; // facet->point(2)->normal(facet); // fill in the boundary control points. Define as the normal to the local // triangle formed by the quartic control point lattice // store here again the 9 control points on the edges CartVect CP[9]; // 9 control points on the edges, rval = _mb->tag_get_data( _facetEdgeCtrlTag, &facet, 1, &CP[0] ); if( MB_SUCCESS != rval ) return rval; // there are 3 CP for each edge, 0, 1, 2; first edge is 1-2 // CubitFacetEdge *edge; // edge = facet->edge( 2 ); // CubitVector ctrl_pts[5]; // edge->control_points(facet, ctrl_pts); // 2, 1, 0 // Nijk[1] = (ctrl_pts[2] - ctrl_pts[1]) * (P_facet[0] - ctrl_pts[1]); Nijk[1] = ( CP[7] - CP[6] ) * ( P_facet[0] - CP[6] ); Nijk[1].normalize(); // 1, 2, 0 // Nijk[2] = (ctrl_pts[3] - ctrl_pts[2]) * (P_facet[1] - ctrl_pts[2]); Nijk[2] = ( CP[8] - CP[7] ) * ( P_facet[1] - CP[7] ); Nijk[2].normalize(); // edge = facet->edge( 0 ); // edge->control_points(facet, ctrl_pts); // 0, 2, 1 // Nijk[6] = (ctrl_pts[1] - P_facet[1]) * (ctrl_pts[2] - P_facet[1]); Nijk[6] = ( CP[0] - P_facet[1] ) * ( CP[1] - P_facet[1] ); Nijk[6].normalize(); // 0, 1, 2 // Nijk[8] = (ctrl_pts[2] - P_facet[2]) * (ctrl_pts[3] - P_facet[2]); Nijk[8] = ( CP[1] - P_facet[2] ) * ( CP[2] - P_facet[2] ); Nijk[8].normalize(); // edge = facet->edge( 1 ); // edge->control_points(facet, ctrl_pts); // 1, 0, 2 // Nijk[7] = (P_facet[2] - ctrl_pts[2]) * (ctrl_pts[1] - ctrl_pts[2]); Nijk[7] = ( P_facet[2] - CP[4] ) * ( CP[3] - CP[4] ); Nijk[7].normalize(); // 2, 0, 1 // Nijk[4] = (P_facet[0] - ctrl_pts[3]) * (ctrl_pts[2] - ctrl_pts[3]); Nijk[4] = ( P_facet[0] - CP[5] ) * ( CP[4] - CP[5] ); Nijk[4].normalize(); // 1, 1, 1 Nijk[5] = ( P_facet[1] - P_facet[0] ) * ( P_facet[2] - P_facet[0] ); Nijk[5].normalize(); // end copy from hodograph // sum the contribution from each of the control points normal = CartVect( 0.0e0, 0.0e0, 0.0e0 ); // i=3; j=0; k=0; // double Bsum = 0.0; double B = mbcube( areacoord[0] ); // Bsum += B; normal += B * Nijk[0]; // i=2; j=1; k=0; B = 3.0 * mbsqr( areacoord[0] ) * areacoord[1]; // Bsum += B; normal += B * Nijk[1]; // i=1; j=2; k=0; B = 3.0 * areacoord[0] * mbsqr( areacoord[1] ); // Bsum += B; normal += B * Nijk[2]; // i=0; j=3; k=0; B = mbcube( areacoord[1] ); // Bsum += B; normal += B * Nijk[3]; // i=2; j=0; k=1; B = 3.0 * mbsqr( areacoord[0] ) * areacoord[2]; // Bsum += B; normal += B * Nijk[4]; // i=1; j=1; k=1; B = 6.0 * areacoord[0] * areacoord[1] * areacoord[2]; // Bsum += B; normal += B * Nijk[5]; // i=0; j=2; k=1; B = 3.0 * mbsqr( areacoord[1] ) * areacoord[2]; // Bsum += B; normal += B * Nijk[6]; // i=1; j=0; k=2; B = 3.0 * areacoord[0] * mbsqr( areacoord[2] ); // Bsum += B; normal += B * Nijk[7]; // i=0; j=1; k=2; B = 3.0 * areacoord[1] * mbsqr( areacoord[2] ); // Bsum += B; normal += B * Nijk[8]; // i=0; j=0; k=3; B = mbcube( areacoord[2] ); // Bsum += B; normal += B * Nijk[9]; // assert(fabs(Bsum - 1.0) < 1e-9); normal.normalize(); return MB_SUCCESS; }
int moab::SmoothFace::eval_counter | ( | ) | [inline] |
Definition at line 125 of file SmoothFace.hpp.
References _evaluationsCounter.
{ return _evaluationsCounter; }
ErrorCode moab::SmoothFace::evaluate_smooth_edge | ( | EntityHandle | eh, |
double & | t, | ||
CartVect & | outv | ||
) |
Definition at line 708 of file SmoothFace.cpp.
References _edgeCtrlTag, _mb, ErrorCode, moab::Interface::get_connectivity(), moab::Interface::get_coords(), MB_SUCCESS, and moab::Interface::tag_get_data().
{ CartVect P[2]; // P0 and P1 CartVect controlPoints[3]; // edge control points double t4, t3, t2, one_minus_t, one_minus_t2, one_minus_t3, one_minus_t4; // project the position to the linear edge // t is from 0 to 1 only!! // double tt = (t + 1) * 0.5; if( tt <= 0.0 ) tt = 0.0; if( tt >= 1.0 ) tt = 1.0; int nnodes = 0; const EntityHandle* conn2 = NULL; ErrorCode rval = _mb->get_connectivity( eh, conn2, nnodes ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; rval = _mb->get_coords( conn2, 2, (double*)&P[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; rval = _mb->tag_get_data( _edgeCtrlTag, &eh, 1, (double*)&controlPoints[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; t2 = tt * tt; t3 = t2 * tt; t4 = t3 * tt; one_minus_t = 1. - tt; one_minus_t2 = one_minus_t * one_minus_t; one_minus_t3 = one_minus_t2 * one_minus_t; one_minus_t4 = one_minus_t3 * one_minus_t; outv = one_minus_t4 * P[0] + 4. * one_minus_t3 * tt * controlPoints[0] + 6. * one_minus_t2 * t2 * controlPoints[1] + 4. * one_minus_t * t3 * controlPoints[2] + t4 * P[1]; return MB_SUCCESS; }
void moab::SmoothFace::facet_area_coordinate | ( | EntityHandle | facet, |
CartVect & | pt_on_plane, | ||
CartVect & | areacoord | ||
) |
Definition at line 929 of file SmoothFace.cpp.
References _mb, _planeTag, determ3, ErrorCode, GEOMETRY_RESABS, moab::Interface::get_connectivity(), moab::Interface::get_coords(), length_squared(), MB_SUCCESS, moab::Interface::tag_get_data(), and moab::within_tolerance().
Referenced by project_to_facets().
{ const EntityHandle* conn3 = NULL; int nnodes = 0; ErrorCode rval = _mb->get_connectivity( facet, conn3, nnodes ); assert( MB_SUCCESS == rval ); if( rval ) { } // empty statement to prevent compiler warning // double coords[9]; // store the coordinates for the nodes //_mb->get_coords(conn3, 3, coords); CartVect p[3]; rval = _mb->get_coords( conn3, 3, (double*)&p[0] ); assert( MB_SUCCESS == rval ); if( rval ) { } // empty statement to prevent compiler warning double plane[4]; rval = _mb->tag_get_data( _planeTag, &facet, 1, plane ); assert( rval == MB_SUCCESS ); if( rval ) { } // empty statement to prevent compiler warning CartVect normal( &plane[0] ); // just first 3 components are used double area2; double tol = GEOMETRY_RESABS * 1.e-5; // 1.e-11; CartVect v1( p[1] - p[0] ); CartVect v2( p[2] - p[0] ); area2 = ( v1 * v2 ).length_squared(); // the same for CartVect if( area2 < 100 * tol ) { tol = .01 * area2; } CartVect absnorm( fabs( normal[0] ), fabs( normal[1] ), fabs( normal[2] ) ); // project to the closest coordinate plane so we only have to do this in 2D if( absnorm[0] >= absnorm[1] && absnorm[0] >= absnorm[2] ) { area2 = determ3( p[0][1], p[0][2], p[1][1], p[1][2], p[2][1], p[2][2] ); if( fabs( area2 ) < tol ) { areacoord = CartVect( -std::numeric_limits< double >::min() ); // .set( // -std::numeric_limits<double>::min(), // -std::numeric_limits<double>::min(), // -std::numeric_limits<double>::min() ); } else if( within_tolerance( p[0], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 1., 0., 0. ); //.set( 1.0, 0.0, 0.0 ); } else if( within_tolerance( p[1], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 1., 0. ); //.set( 0.0, 1.0, 0.0 ); } else if( within_tolerance( p[2], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 0., 1. ); //.set( 0.0, 0.0, 1.0 ); } else { areacoord[0] = determ3( pt_on_plane[1], pt_on_plane[2], p[1][1], p[1][2], p[2][1], p[2][2] ) / area2; areacoord[1] = determ3( p[0][1], p[0][2], pt_on_plane[1], pt_on_plane[2], p[2][1], p[2][2] ) / area2; areacoord[2] = determ3( p[0][1], p[0][2], p[1][1], p[1][2], pt_on_plane[1], pt_on_plane[2] ) / area2; } } else if( absnorm[1] >= absnorm[0] && absnorm[1] >= absnorm[2] ) { area2 = determ3( p[0][0], p[0][2], p[1][0], p[1][2], p[2][0], p[2][2] ); if( fabs( area2 ) < tol ) { areacoord = CartVect( -std::numeric_limits< double >::min() ); //.set( //-std::numeric_limits<double>::min(), //-std::numeric_limits<double>::min(), //-std::numeric_limits<double>::min() ); } else if( within_tolerance( p[0], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 1., 0., 0. ); //.set( 1.0, 0.0, 0.0 ); } else if( within_tolerance( p[1], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 1., 0. ); //.set( 0.0, 1.0, 0.0 ); } else if( within_tolerance( p[2], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 0., 1. ); //.set( 0.0, 0.0, 1.0 ); } else { areacoord[0] = determ3( pt_on_plane[0], pt_on_plane[2], p[1][0], p[1][2], p[2][0], p[2][2] ) / area2; areacoord[1] = determ3( p[0][0], p[0][2], pt_on_plane[0], pt_on_plane[2], p[2][0], p[2][2] ) / area2; areacoord[2] = determ3( p[0][0], p[0][2], p[1][0], p[1][2], pt_on_plane[0], pt_on_plane[2] ) / area2; } } else { /*area2 = determ3(pt0->x(), pt0->y(), pt1->x(), pt1->y(), pt2->x(), pt2->y());*/ area2 = determ3( p[0][0], p[0][1], p[1][0], p[1][1], p[2][0], p[2][1] ); if( fabs( area2 ) < tol ) { areacoord = CartVect( -std::numeric_limits< double >::min() ); //.set( //-std::numeric_limits<double>::min(), //-std::numeric_limits<double>::min(), //-std::numeric_limits<double>::min() ); } else if( within_tolerance( p[0], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 1., 0., 0. ); //.set( 1.0, 0.0, 0.0 ); } else if( within_tolerance( p[1], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 1., 0. ); //.set( 0.0, 1.0, 0.0 ); } else if( within_tolerance( p[2], pt_on_plane, GEOMETRY_RESABS ) ) { areacoord = CartVect( 0., 0., 1. ); //.set( 0.0, 0.0, 1.0 ); } else { areacoord[0] = determ3( pt_on_plane[0], pt_on_plane[1], p[1][0], p[1][1], p[2][0], p[2][1] ) / area2; areacoord[1] = determ3( p[0][0], p[0][1], pt_on_plane[0], pt_on_plane[1], p[2][0], p[2][1] ) / area2; areacoord[2] = determ3( p[0][0], p[0][1], p[1][0], p[1][1], pt_on_plane[0], pt_on_plane[1] ) / area2; } } }
ErrorCode moab::SmoothFace::find_edges_orientations | ( | EntityHandle | edges[3], |
const EntityHandle * | conn3, | ||
int | orient[3] | ||
) | [private] |
Definition at line 436 of file SmoothFace.cpp.
References _mb, ErrorCode, moab::Interface::get_adjacencies(), moab::Interface::get_connectivity(), moab::Interface::INTERSECT, and MB_SUCCESS.
Referenced by compute_internal_control_points_on_facets().
{ // find the edge that is adjacent to 2 vertices at a time for( int i = 0; i < 3; i++ ) { // edge 0 is 1-2, 1 is 3-1, 2 is 0-1 EntityHandle v[2]; v[0] = conn3[( i + 1 ) % 3]; v[1] = conn3[( i + 2 ) % 3]; std::vector< EntityHandle > adjacencies; // generate all edges for these two hexes ErrorCode rval = _mb->get_adjacencies( v, 2, 1, false, adjacencies, Interface::INTERSECT ); if( MB_SUCCESS != rval ) return rval; // find the edge connected to both vertices, and then see its orientation assert( adjacencies.size() == 1 ); const EntityHandle* conn2 = NULL; int nnodes = 0; rval = _mb->get_connectivity( adjacencies[0], conn2, nnodes ); assert( rval == MB_SUCCESS ); assert( 2 == nnodes ); edges[i] = adjacencies[0]; // what is the story morning glory? if( conn2[0] == v[0] && conn2[1] == v[1] ) orient[i] = 1; else if( conn2[0] == v[1] && conn2[1] == v[0] ) orient[i] = -1; else return MB_FAILURE; } return MB_SUCCESS; }
ErrorCode moab::SmoothFace::get_normals_for_vertices | ( | const EntityHandle * | conn2, |
CartVect | N[2] | ||
) |
Definition at line 1900 of file SmoothFace.cpp.
References _gradientTag, _mb, ErrorCode, and moab::Interface::tag_get_data().
{ // CartVect N[2]; //_mb->tag_get_data(_gradientTag, conn2, 2, normalVec); ErrorCode rval = _mb->tag_get_data( _gradientTag, conn2, 2, (double*)&N[0] ); return rval; }
ErrorCode moab::SmoothFace::init_bezier_edge | ( | EntityHandle | edge, |
double | min_dot | ||
) | [private] |
Definition at line 305 of file SmoothFace.cpp.
References _edgeCtrlTag, _gradientTag, _mb, _tangentsTag, moab::debug_surf_eval1, ErrorCode, moab::Interface::get_connectivity(), moab::Interface::get_coords(), moab::Interface::id_from_handle(), init_edge_control_points(), MB_SUCCESS, T, moab::Interface::tag_get_data(), and moab::Interface::tag_set_data().
Referenced by compute_control_points_on_edges().
{ // min dot was used for angle here // int stat = 0; // CUBIT_SUCCESS; // all boundaries will be simple, initially // we may complicate them afterwards CartVect ctrl_pts[3]; int nnodes = 0; const EntityHandle* conn2 = NULL; ErrorCode rval = _mb->get_connectivity( edge, conn2, nnodes ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; assert( 2 == nnodes ); // double coords[6]; // store the coordinates for the nodes CartVect P[2]; // ErrorCode rval = _mb->get_coords(conn2, 2, coords); rval = _mb->get_coords( conn2, 2, (double*)&P[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; // CartVect P0(&coords[0]); // CartVect P3(&coords[3]); // double normalVec[6]; CartVect N[2]; //_mb->tag_get_data(_gradientTag, conn2, 2, normalVec); rval = _mb->tag_get_data( _gradientTag, conn2, 2, (double*)&N[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; CartVect T[2]; // T0, T3 rval = _mb->tag_get_data( _tangentsTag, &edge, 1, &T[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; rval = init_edge_control_points( P[0], P[1], N[0], N[1], T[0], T[1], ctrl_pts ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; rval = _mb->tag_set_data( _edgeCtrlTag, &edge, 1, &ctrl_pts[0] ); assert( rval == MB_SUCCESS ); if( MB_SUCCESS != rval ) return rval; if( debug_surf_eval1 ) { std::cout << "edge: " << _mb->id_from_handle( edge ) << " tangents: " << T[0] << T[1] << std::endl; std::cout << " points: " << P[0] << " " << P[1] << std::endl; std::cout << " normals: " << N[0] << " " << N[1] << std::endl; std::cout << " Control points " << ctrl_pts[0] << " " << ctrl_pts[1] << " " << ctrl_pts[2] << std::endl; } return MB_SUCCESS; }
ErrorCode moab::SmoothFace::init_edge_control_points | ( | CartVect & | P0, |
CartVect & | P3, | ||
CartVect & | N0, | ||
CartVect & | N3, | ||
CartVect & | T0, | ||
CartVect & | T3, | ||
CartVect * | Pi | ||
) |
Definition at line 399 of file SmoothFace.cpp.
References moab::CartVect::length(), and MB_SUCCESS.
Referenced by init_bezier_edge().
{ CartVect Vi[4]; Vi[0] = P0; Vi[3] = P3; CartVect P03( P3 - P0 ); double di = P03.length(); double ai = N0 % N3; // this is the dot operator, the same as in cgm for CubitVector double ai0 = N0 % T0; double ai3 = N3 % T3; double denom = 4 - ai * ai; if( fabs( denom ) < 1e-20 ) { return MB_FAILURE; // CUBIT_FAILURE; } double row = 6.0e0 * ( 2.0e0 * ai0 + ai * ai3 ) / denom; double omega = 6.0e0 * ( 2.0e0 * ai3 + ai * ai0 ) / denom; Vi[1] = Vi[0] + ( di * ( ( ( 6.0e0 * T0 ) - ( ( 2.0e0 * row ) * N0 ) + ( omega * N3 ) ) / 18.0e0 ) ); Vi[2] = Vi[3] - ( di * ( ( ( 6.0e0 * T3 ) + ( row * N0 ) - ( ( 2.0e0 * omega ) * N3 ) ) / 18.0e0 ) ); // CartVect Wi[3]; // Wi[0] = Vi[1] - Vi[0]; // Wi[1] = Vi[2] - Vi[1]; // Wi[2] = Vi[3] - Vi[2]; Pi[0] = 0.25 * Vi[0] + 0.75 * Vi[1]; Pi[1] = 0.50 * Vi[1] + 0.50 * Vi[2]; Pi[2] = 0.75 * Vi[2] + 0.25 * Vi[3]; return MB_SUCCESS; }
ErrorCode moab::SmoothFace::init_facet_control_points | ( | CartVect | N[6], |
CartVect | P[3][5], | ||
CartVect | G[6] | ||
) | [private] |
Definition at line 580 of file SmoothFace.cpp.
References ErrorCode, length(), moab::CartVect::length(), and MB_SUCCESS.
Referenced by compute_internal_control_points_on_facets().
{ CartVect Di[4], Ai[3], N0, N3, Vi[4], Wi[3]; double denom; double lambda[2], mu[2]; ErrorCode rval = MB_SUCCESS; for( int i = 0; i < 3; i++ ) { N0 = N[i * 2]; N3 = N[i * 2 + 1]; Vi[0] = P[i][0]; Vi[1] = ( P[i][1] - 0.25 * P[i][0] ) / 0.75; Vi[2] = ( P[i][3] - 0.25 * P[i][4] ) / 0.75; Vi[3] = P[i][4]; Wi[0] = Vi[1] - Vi[0]; Wi[1] = Vi[2] - Vi[1]; Wi[2] = Vi[3] - Vi[2]; Di[0] = P[( i + 2 ) % 3][3] - 0.5 * ( P[i][1] + P[i][0] ); Di[3] = P[( i + 1 ) % 3][1] - 0.5 * ( P[i][4] + P[i][3] ); Ai[0] = ( N0 * Wi[0] ) / Wi[0].length(); Ai[2] = ( N3 * Wi[2] ) / Wi[2].length(); Ai[1] = Ai[0] + Ai[2]; denom = Ai[1].length(); Ai[1] /= denom; lambda[0] = ( Di[0] % Wi[0] ) / ( Wi[0] % Wi[0] ); lambda[1] = ( Di[3] % Wi[2] ) / ( Wi[2] % Wi[2] ); mu[0] = ( Di[0] % Ai[0] ); mu[1] = ( Di[3] % Ai[2] ); G[i * 2] = 0.5 * ( P[i][1] + P[i][2] ) + 0.66666666666666 * lambda[0] * Wi[1] + 0.33333333333333 * lambda[1] * Wi[0] + 0.66666666666666 * mu[0] * Ai[1] + 0.33333333333333 * mu[1] * Ai[0]; G[i * 2 + 1] = 0.5 * ( P[i][2] + P[i][3] ) + 0.33333333333333 * lambda[0] * Wi[2] + 0.66666666666666 * lambda[1] * Wi[1] + 0.33333333333333 * mu[0] * Ai[2] + 0.66666666666666 * mu[1] * Ai[1]; } return rval; }
int moab::SmoothFace::init_gradient | ( | ) |
Definition at line 170 of file SmoothFace.cpp.
References _edges, _gradientTag, _maxim, _mb, _minim, _nodes, _planeTag, _set, _triangles, moab::angle(), moab::CartVect::array(), moab::Range::begin(), moab::Range::clear(), moab::debug_surf_eval1, moab::Range::end(), ErrorCode, moab::CartVect::get(), moab::Interface::get_adjacencies(), moab::Interface::get_connectivity(), moab::Interface::get_coords(), moab::Interface::get_entities_by_type(), moab::Interface::id_from_handle(), MB_SUCCESS, MB_TAG_CREAT, MB_TAG_DENSE, MB_TYPE_DOUBLE, MBTRI, moab::CartVect::normalize(), moab::Range::size(), moab::Interface::tag_get_data(), moab::Interface::tag_get_handle(), moab::Interface::tag_set_data(), and moab::Interface::UNION.
Referenced by moab::FBEngine::initializeSmoothing().
{ // first, create a Tag for gradient (or normal) // loop over all triangles in set, and modify the normals according to the angle as weight // get all the edges from this subset if( NULL == _mb ) return 1; // fail _triangles.clear(); ErrorCode rval = _mb->get_entities_by_type( _set, MBTRI, _triangles ); if( MB_SUCCESS != rval ) return 1; // get a new range of edges, and decide the loops from here _edges.clear(); rval = _mb->get_adjacencies( _triangles, 1, true, _edges, Interface::UNION ); assert( rval == MB_SUCCESS ); rval = _mb->get_adjacencies( _triangles, 0, false, _nodes, Interface::UNION ); assert( rval == MB_SUCCESS ); // initialize bounding box limits CartVect vert1; EntityHandle v1 = _nodes[0]; // first vertex _mb->get_coords( &v1, 1, (double*)&vert1 ); _minim = vert1; _maxim = vert1; double defNormal[] = { 0., 0., 0. }; // look for a tag name here that is definitely unique. We do not want the tags to interfere with // each other this normal will be for each node in a face some nodes have multiple normals, if // they are at the feature edges unsigned long setId = _mb->id_from_handle( _set ); char name[50] = { 0 }; sprintf( name, "GRADIENT%lu", setId ); // name should be something like GRADIENT29, where 29 is the set ID of the face rval = _mb->tag_get_handle( name, 3, MB_TYPE_DOUBLE, _gradientTag, MB_TAG_DENSE | MB_TAG_CREAT, &defNormal ); assert( rval == MB_SUCCESS ); double defPlane[4] = { 0., 0., 1., 0. }; // also define a plane tag ; this will be for each triangle char namePlaneTag[50] = { 0 }; sprintf( namePlaneTag, "PLANE%lu", setId ); rval = _mb->tag_get_handle( "PLANE", 4, MB_TYPE_DOUBLE, _planeTag, MB_TAG_DENSE | MB_TAG_CREAT, &defPlane ); assert( rval == MB_SUCCESS ); // the fourth double is for weight, accumulated at each vertex so far // maybe not needed in the end for( Range::iterator it = _triangles.begin(); it != _triangles.end(); ++it ) { EntityHandle tria = *it; const EntityHandle* conn3; int nnodes; _mb->get_connectivity( tria, conn3, nnodes ); if( nnodes != 3 ) return 1; // error // double coords[9]; // store the coordinates for the nodes //_mb->get_coords(conn3, 3, coords); CartVect p[3]; _mb->get_coords( conn3, 3, (double*)&p[0] ); // need to compute the angles // compute angles and the normal // CartVect p1(&coords[0]), p2(&coords[3]), p3(&coords[6]); CartVect AB( p[1] - p[0] ); //(p2 - p1); CartVect BC( p[2] - p[1] ); //(p3 - p2); CartVect CA( p[0] - p[2] ); //(p1 - p3); double a[3]; a[1] = angle( AB, -BC ); // angle at B (p2), etc. a[2] = angle( BC, -CA ); a[0] = angle( CA, -AB ); CartVect normal = -AB * CA; normal.normalize(); double plane[4]; const double* coordNormal = normal.array(); plane[0] = coordNormal[0]; plane[1] = coordNormal[1]; plane[2] = coordNormal[2]; plane[3] = -normal % p[0]; // dot product // set the plane rval = _mb->tag_set_data( _planeTag, &tria, 1, plane ); assert( rval == MB_SUCCESS ); // add to each vertex the tag value the normal multiplied by the angle double values[9]; _mb->tag_get_data( _gradientTag, conn3, 3, values ); for( int i = 0; i < 3; i++ ) { // values[4*i]+=a[i]; // first is the weight, which we do not really need values[3 * i + 0] += a[i] * coordNormal[0]; values[3 * i + 1] += a[i] * coordNormal[1]; values[3 * i + 2] += a[i] * coordNormal[2]; } // reset those values _mb->tag_set_data( _gradientTag, conn3, 3, values ); } // normalize the gradients at each node; maybe not needed here? // no, we will do it, it is important int numNodes = _nodes.size(); double* normalVal = new double[3 * numNodes]; _mb->tag_get_data( _gradientTag, _nodes, normalVal ); // get all the normal values at the _nodes for( int i = 0; i < numNodes; i++ ) { CartVect p1( &normalVal[3 * i] ); p1.normalize(); p1.get( &normalVal[3 * i] ); } // reset the normal values after normalization _mb->tag_set_data( _gradientTag, _nodes, normalVal ); // print the loops size and some other stuff if( debug_surf_eval1 ) { std::cout << " normals at " << numNodes << " nodes" << std::endl; int i = 0; for( Range::iterator it = _nodes.begin(); it != _nodes.end(); ++it, i++ ) { EntityHandle node = *it; std::cout << " Node id " << _mb->id_from_handle( node ) << " " << normalVal[3 * i] << " " << normalVal[3 * i + 1] << " " << normalVal[3 * i + 2] << std::endl; } } delete[] normalVal; return 0; }
bool moab::SmoothFace::is_at_vertex | ( | EntityHandle | facet, |
CartVect & | pt, | ||
CartVect & | ac, | ||
double | compare_tol, | ||
CartVect & | eval_pt, | ||
CartVect * | eval_norm_ptr | ||
) |
Definition at line 1576 of file SmoothFace.cpp.
References _gradientTag, _mb, moab::Interface::get_connectivity(), moab::Interface::get_coords(), length(), and moab::Interface::tag_get_data().
Referenced by project_to_patch().
{ double dist; CartVect vert_loc; const double actol = 0.1; // get coordinates get_coords const EntityHandle* conn3 = NULL; int nnodes = 0; _mb->get_connectivity( facet, conn3, nnodes ); // // double coords[9]; // store the coordinates for the nodes //_mb->get_coords(conn3, 3, coords); CartVect p[3]; _mb->get_coords( conn3, 3, (double*)&p[0] ); // also get the normals at nodes CartVect NN[3]; _mb->tag_get_data( _gradientTag, conn3, 3, (double*)&NN[0] ); if( fabs( ac[0] ) < actol && fabs( ac[1] ) < actol ) { vert_loc = p[2]; dist = ( pt - vert_loc ).length(); // pt.distance_between( vert_loc ); if( dist <= compare_tol ) { eval_pt = vert_loc; if( eval_norm_ptr ) { *eval_norm_ptr = NN[2]; } return true; } } if( fabs( ac[0] ) < actol && fabs( ac[2] ) < actol ) { vert_loc = p[1]; dist = ( pt - vert_loc ).length(); // pt.distance_between( vert_loc ); if( dist <= compare_tol ) { eval_pt = vert_loc; if( eval_norm_ptr ) { *eval_norm_ptr = NN[1]; // facet->point(1)->normal( facet ); } return true; } } if( fabs( ac[1] ) < actol && fabs( ac[2] ) < actol ) { vert_loc = p[0]; dist = ( pt - vert_loc ).length(); // pt.distance_between( vert_loc ); if( dist <= compare_tol ) { eval_pt = vert_loc; if( eval_norm_ptr ) { *eval_norm_ptr = NN[0]; } return true; } } return false; }
bool moab::SmoothFace::move_ac_inside | ( | CartVect & | ac, |
double | tol | ||
) | [private] |
Definition at line 1654 of file SmoothFace.cpp.
Referenced by project_to_patch().
{ int nout = 0; if( ac[0] < -tol ) { ac[0] = 0.0; ac[1] = ac[1] / ( ac[1] + ac[2] ); //( ac.y() / (ac.y() + ac.z()) ; ac[2] = 1. - ac[1]; // ac.z( 1.0 - ac.y() ); nout++; } if( ac[1] < -tol ) { ac[1] = 0.; // ac.y( 0.0 ); ac[0] = ac[0] / ( ac[0] + ac[2] ); // ac.x( ac.x() / (ac.x() + ac.z()) ); ac[2] = 1. - ac[0]; // ac.z( 1.0 - ac.x() ); nout++; } if( ac[2] < -tol ) { ac[2] = 0.; // ac.z( 0.0 ); ac[0] = ac[0] / ( ac[0] + ac[1] ); // ac.x( ac.x() / (ac.x() + ac.y()) ); ac[1] = 1. - ac[0]; // ac.y( 1.0 - ac.x() ); nout++; } return ( nout > 0 ) ? true : false; }
void moab::SmoothFace::move_to_surface | ( | double & | x, |
double & | y, | ||
double & | z | ||
) | [virtual] |
Definition at line 104 of file SmoothFace.cpp.
References ErrorCode, MB_SUCCESS, and project_to_facets_main().
Referenced by moab::FBEngine::getEntClosestPt(), and moab::FBEngine::smooth_new_intx_points().
{ CartVect loc2( x, y, z ); bool trim = false; // is it needed? bool outside = true; CartVect closestPoint; ErrorCode rval = project_to_facets_main( loc2, trim, outside, &closestPoint, NULL ); if( MB_SUCCESS != rval ) return; assert( rval == MB_SUCCESS ); x = closestPoint[0]; y = closestPoint[1]; z = closestPoint[2]; }
bool moab::SmoothFace::normal_at | ( | double | x, |
double | y, | ||
double | z, | ||
double & | nx, | ||
double & | ny, | ||
double & | nz | ||
) | [virtual] |
Definition at line 127 of file SmoothFace.cpp.
References ErrorCode, MB_SUCCESS, and project_to_facets_main().
Referenced by moab::FBEngine::getEntNrmlXYZ().
{ CartVect loc2( x, y, z ); bool trim = false; // is it needed? bool outside = true; // CartVect closestPoint;// not needed // not interested in normal CartVect normal; ErrorCode rval = project_to_facets_main( loc2, trim, outside, NULL, &normal ); if( MB_SUCCESS != rval ) return false; assert( rval == MB_SUCCESS ); nx = normal[0]; ny = normal[1]; nz = normal[2]; return true; }
ErrorCode moab::SmoothFace::project_to_facet | ( | EntityHandle | facet, |
CartVect & | pt, | ||
CartVect & | areacoord, | ||
CartVect & | close_point, | ||
bool & | outside_facet, | ||
double | compare_tol | ||
) |
Definition at line 1545 of file SmoothFace.cpp.
References _mb, ErrorCode, moab::Interface::get_connectivity(), moab::Interface::get_coords(), and project_to_patch().
Referenced by project_to_facets().
{ const EntityHandle* conn3 = NULL; int nnodes = 0; _mb->get_connectivity( facet, conn3, nnodes ); // // double coords[9]; // store the coordinates for the nodes //_mb->get_coords(conn3, 3, coords); CartVect p[3]; _mb->get_coords( conn3, 3, (double*)&p[0] ); int edge_id = -1; ErrorCode stat = project_to_patch( facet, areacoord, pt, close_point, NULL, outside_facet, compare_tol, edge_id ); /* } break; }*/ return stat; }
void moab::SmoothFace::project_to_facet_plane | ( | EntityHandle | tri, |
CartVect & | pt, | ||
CartVect & | point_on_plane, | ||
double & | dist_to_plane | ||
) |
Definition at line 902 of file SmoothFace.cpp.
References _mb, _planeTag, ErrorCode, MB_SUCCESS, and moab::Interface::tag_get_data().
Referenced by project_to_facets().
{ double plane[4]; ErrorCode rval = _mb->tag_get_data( _planeTag, &tri, 1, plane ); if( MB_SUCCESS != rval ) return; assert( rval == MB_SUCCESS ); // _planeTag CartVect normal( &plane[0] ); // just first 3 components are used double dist = normal % pt + plane[3]; // coeff d is saved!!! dist_to_plane = fabs( dist ); point_on_plane = pt - dist * normal; return; }
ErrorCode moab::SmoothFace::project_to_facets | ( | std::vector< EntityHandle > & | facet_list, |
EntityHandle & | lastFacet, | ||
int | interpOrder, | ||
double | compareTol, | ||
CartVect & | this_point, | ||
bool | trim, | ||
bool & | outside, | ||
CartVect * | closest_point_ptr, | ||
CartVect * | normal_ptr | ||
) |
best_facet
Definition at line 1101 of file SmoothFace.cpp.
References eval_bezier_patch_normal(), facet_area_coordinate(), length(), MB_SUCCESS, project_to_facet(), and project_to_facet_plane().
Referenced by project_to_facets_main().
{ bool outside_facet = false; bool best_outside_facet = true; double mindist = 1.e20; CartVect close_point, best_point( mindist, mindist, mindist ), best_areacoord; EntityHandle best_facet = 0L; // no best facet found yet EntityHandle facet; assert( facet_list.size() > 0 ); double big_dist = compareTol * 1.0e3; // from the list of close facets, determine the closest point for( size_t i = 0; i < facet_list.size(); i++ ) { facet = facet_list[i]; CartVect pt_on_plane; double dist_to_plane; project_to_facet_plane( facet, this_point, pt_on_plane, dist_to_plane ); CartVect areacoord; // CartVect close_point; facet_area_coordinate( facet, pt_on_plane, areacoord ); if( interpOrder != 0 ) { // modify the areacoord - project to the bezier patch- snaps to the // edge of the patch if necessary if( project_to_facet( facet, this_point, areacoord, close_point, outside_facet, compareTol ) != MB_SUCCESS ) { return MB_FAILURE; } // if (closest_point_ptr) //*closest_point_ptr = close_point; } // keep track of the minimum distance double dist = ( close_point - this_point ).length(); // close_point.distance_between(this_point); if( ( best_outside_facet == outside_facet && dist < mindist ) || ( best_outside_facet && !outside_facet && ( dist < big_dist || best_facet == 0L /*!best_facet*/ ) ) ) { mindist = dist; best_point = close_point; best_facet = facet; best_areacoord = areacoord; best_outside_facet = outside_facet; if( dist < compareTol ) { break; } big_dist = 10.0 * mindist; } // facet->marked(1); // used_facet_list.append(facet); } if( normal_ptr ) { CartVect normal; if( eval_bezier_patch_normal( best_facet, best_areacoord, normal ) != MB_SUCCESS ) { return MB_FAILURE; } *normal_ptr = normal; } if( closest_point_ptr ) { *closest_point_ptr = best_point; } outside = best_outside_facet; lastFacet = best_facet; return MB_SUCCESS; // end copy }
ErrorCode moab::SmoothFace::project_to_facets_main | ( | CartVect & | this_point, |
bool | trim, | ||
bool & | outside, | ||
CartVect * | closest_point_ptr = NULL , |
||
CartVect * | normal_ptr = NULL |
||
) |
Definition at line 1075 of file SmoothFace.cpp.
References _evaluationsCounter, _my_geomTopoTool, _obb_root, moab::OrientedBoxTreeTool::closest_to_location(), ErrorCode, MB_SUCCESS, moab::GeomTopoTool::obb_tree(), project_to_facets(), and moab::tolerance.
Referenced by move_to_surface(), normal_at(), and ray_intersection_correct().
{ // if there are a lot of facets on this surface - use the OBB search first // to narrow the selection _evaluationsCounter++; double tolerance = 1.e-5; std::vector< EntityHandle > facets_out; // we will start with a list of facets anyway, the best among them wins ErrorCode rval = _my_geomTopoTool->obb_tree()->closest_to_location( (double*)&this_point, _obb_root, tolerance, facets_out ); if( MB_SUCCESS != rval ) return rval; int interpOrder = 4; double compareTol = 1.e-5; EntityHandle lastFacet = facets_out.front(); rval = project_to_facets( facets_out, lastFacet, interpOrder, compareTol, this_point, trim, outside, closest_point_ptr, normal_ptr ); return rval; }
ErrorCode moab::SmoothFace::project_to_patch | ( | EntityHandle | facet, |
CartVect & | ac, | ||
CartVect & | pt, | ||
CartVect & | eval_pt, | ||
CartVect * | eval_norm, | ||
bool & | outside, | ||
double | compare_tol, | ||
int | edge_id | ||
) |
Definition at line 1199 of file SmoothFace.cpp.
References ac_at_edge(), ErrorCode, eval_bezier_patch(), INCR, is_at_vertex(), length(), moab::CartVect::length(), MB_SUCCESS, and move_ac_inside().
Referenced by project_to_facet().
{ ErrorCode status = MB_SUCCESS; // see if we are at a vertex #define INCR 0.01 const double tol = compare_tol; if( is_at_vertex( facet, pt, ac, compare_tol, eval_pt, eval_norm ) ) { outside = false; return MB_SUCCESS; } // check if the start ac is inside the patch -if not, then move it there int nout = 0; const double atol = 0.001; if( move_ac_inside( ac, atol ) ) nout++; int diverge = 0; int iter = 0; CartVect newpt; eval_bezier_patch( facet, ac, newpt ); CartVect move = pt - newpt; double lastdist = move.length(); double bestdist = lastdist; CartVect bestac = ac; CartVect bestpt = newpt; CartVect bestnorm( 0, 0, 0 ); // If we are already close enough, then return now if( lastdist <= tol && !eval_norm && nout == 0 ) { eval_pt = pt; outside = false; return status; } double ratio, mag, umove, vmove, det, distnew, movedist; CartVect lastpt = newpt; CartVect lastac = ac; CartVect norm; CartVect xpt, ypt, zpt, xac, yac, zac, xvec, yvec, zvec; CartVect du, dv, newac; bool done = false; while( !done ) { // We will be locating the projected point within the u,v,w coordinate // system of the triangular bezier patch. Since u+v+w=1, the components // are not linearly independent. We will choose only two of the // coordinates to use and compute the third. int system; if( lastac[0] >= lastac[1] && lastac[0] >= lastac[2] ) { system = 0; } else if( lastac[1] >= lastac[2] ) { system = 1; } else { system = 2; } // compute the surface derivatives with respect to each // of the barycentric coordinates if( system == 1 || system == 2 ) { xac[0] = lastac[0] + INCR; // xac.x( lastac.x() + INCR ); if( lastac[1] + lastac[2] == 0.0 ) return MB_FAILURE; ratio = lastac[2] / ( lastac[1] + lastac[2] ); // ratio = lastac.z() / (lastac.y() + lastac.z()); xac[1] = ( 1.0 - xac[0] ) * ( 1.0 - ratio ); // xac.y( (1.0 - xac.x()) * (1.0 - ratio) ); xac[2] = 1.0 - xac[0] - xac[1]; // xac.z( 1.0 - xac.x() - xac.y() ); eval_bezier_patch( facet, xac, xpt ); xvec = xpt - lastpt; xvec /= INCR; } if( system == 0 || system == 2 ) { yac[1] = ( lastac[1] + INCR ); // yac.y( lastac.y() + INCR ); if( lastac[0] + lastac[2] == 0.0 ) // if (lastac.x() + lastac.z() == 0.0) return MB_FAILURE; ratio = lastac[2] / ( lastac[0] + lastac[2] ); // ratio = lastac.z() / (lastac.x() + lastac.z()); yac[0] = ( ( 1.0 - yac[1] ) * ( 1.0 - ratio ) ); // yac.x( (1.0 - yac.y()) * (1.0 - ratio) ); yac[2] = ( 1.0 - yac[0] - yac[1] ); // yac.z( 1.0 - yac.x() - yac.y() ); eval_bezier_patch( facet, yac, ypt ); yvec = ypt - lastpt; yvec /= INCR; } if( system == 0 || system == 1 ) { zac[2] = ( lastac[2] + INCR ); // zac.z( lastac.z() + INCR ); if( lastac[0] + lastac[1] == 0.0 ) // if (lastac.x() + lastac.y() == 0.0) return MB_FAILURE; ratio = lastac[1] / ( lastac[0] + lastac[1] ); // ratio = lastac.y() / (lastac.x() + lastac.y()); zac[0] = ( ( 1.0 - zac[2] ) * ( 1.0 - ratio ) ); // zac.x( (1.0 - zac.z()) * (1.0 - ratio) ); zac[1] = ( 1.0 - zac[0] - zac[2] ); // zac.y( 1.0 - zac.x() - zac.z() ); eval_bezier_patch( facet, zac, zpt ); zvec = zpt - lastpt; zvec /= INCR; } // compute the surface normal switch( system ) { case 0: du = yvec; dv = zvec; break; case 1: du = zvec; dv = xvec; break; case 2: du = xvec; dv = yvec; break; } norm = du * dv; mag = norm.length(); if( mag < DBL_EPSILON ) { return MB_FAILURE; // do something else here (it is likely a flat triangle - // so try evaluating just an edge of the bezier patch) } norm /= mag; if( iter == 0 ) bestnorm = norm; // project the move vector to the tangent plane move = ( norm * move ) * norm; // compute an equivalent u-v-w vector CartVect absnorm( fabs( norm[0] ), fabs( norm[1] ), fabs( norm[2] ) ); if( absnorm[2] >= absnorm[1] && absnorm[2] >= absnorm[0] ) { det = du[0] * dv[1] - dv[0] * du[1]; if( fabs( det ) <= DBL_EPSILON ) { return MB_FAILURE; // do something else here } umove = ( move[0] * dv[1] - dv[0] * move[1] ) / det; vmove = ( du[0] * move[1] - move[0] * du[1] ) / det; } else if( absnorm[1] >= absnorm[2] && absnorm[1] >= absnorm[0] ) { det = du[0] * dv[2] - dv[0] * du[2]; if( fabs( det ) <= DBL_EPSILON ) { return MB_FAILURE; } umove = ( move[0] * dv[2] - dv[0] * move[2] ) / det; vmove = ( du[0] * move[2] - move[0] * du[2] ) / det; } else { det = du[1] * dv[2] - dv[1] * du[2]; if( fabs( det ) <= DBL_EPSILON ) { return MB_FAILURE; } umove = ( move[1] * dv[2] - dv[1] * move[2] ) / det; vmove = ( du[1] * move[2] - move[1] * du[2] ) / det; } /* === compute the new u-v coords and evaluate surface at new location */ switch( system ) { case 0: newac[1] = ( lastac[1] + umove ); // newac.y( lastac.y() + umove ); newac[2] = ( lastac[2] + vmove ); // newac.z( lastac.z() + vmove ); newac[0] = ( 1.0 - newac[1] - newac[2] ); // newac.x( 1.0 - newac.y() - newac.z() ); break; case 1: newac[2] = ( lastac[2] + umove ); // newac.z( lastac.z() + umove ); newac[0] = ( lastac[0] + vmove ); // newac.x( lastac.x() + vmove ); newac[1] = ( 1.0 - newac[2] - newac[0] ); // newac.y( 1.0 - newac.z() - newac.x() ); break; case 2: newac[0] = ( lastac[0] + umove ); // newac.x( lastac.x() + umove ); newac[1] = ( lastac[1] + vmove ); // newac.y( lastac.y() + vmove ); newac[2] = ( 1.0 - newac[0] - newac[1] ); // newac.z( 1.0 - newac.x() - newac.y() ); break; } // Keep it inside the patch if( newac[0] >= -atol && newac[1] >= -atol && newac[2] >= -atol ) { nout = 0; } else { if( move_ac_inside( newac, atol ) ) nout++; } // Evaluate at the new location if( edge_id != -1 ) ac_at_edge( newac, newac, edge_id ); // move to edge first eval_bezier_patch( facet, newac, newpt ); // Check for convergence distnew = ( pt - newpt ).length(); // pt.distance_between(newpt); move = newpt - lastpt; movedist = move.length(); if( movedist < tol || distnew < tol ) { done = true; if( distnew < bestdist ) { bestdist = distnew; bestac = newac; bestpt = newpt; bestnorm = norm; } } else { // don't allow more than 30 iterations iter++; if( iter > 30 ) { // if (movedist > tol * 100.0) nout=1; done = true; } // Check for divergence - don't allow more than 5 divergent // iterations if( distnew > lastdist ) { diverge++; if( diverge > 10 ) { done = true; // if (movedist > tol * 100.0) nout=1; } } // Check if we are continuing to project outside the facet. // If so, then stop now if( nout > 3 ) { done = true; } // set up for next iteration if( !done ) { if( distnew < bestdist ) { bestdist = distnew; bestac = newac; bestpt = newpt; bestnorm = norm; } lastdist = distnew; lastpt = newpt; lastac = newac; move = pt - lastpt; } } } eval_pt = bestpt; if( eval_norm ) { *eval_norm = bestnorm; } outside = ( nout > 0 ) ? true : false; ac = bestac; return status; }
ErrorCode moab::SmoothFace::ray_intersection_correct | ( | EntityHandle | facet, |
CartVect & | pt, | ||
CartVect & | ray, | ||
CartVect & | eval_pt, | ||
double & | distance, | ||
bool & | outside | ||
) |
Definition at line 1910 of file SmoothFace.cpp.
References moab::dot(), ErrorCode, moab::CartVect::length(), MB_SUCCESS, project_to_facets_main(), and t.
Referenced by moab::FBEngine::getPntRayIntsct().
{ // find a point on the smooth surface CartVect currentPoint = eval_pt; int numIter = 0; double improvement = 1.e20; CartVect diff; while( numIter++ < 5 && improvement > 0.01 ) { CartVect newPos; bool trim = false; // is it needed? outside = true; CartVect closestPoint; CartVect normal; ErrorCode rval = project_to_facets_main( currentPoint, trim, outside, &newPos, &normal ); if( MB_SUCCESS != rval ) return rval; assert( rval == MB_SUCCESS ); diff = newPos - currentPoint; improvement = diff.length(); // ( pt + t * ray - closest ) % normal = 0; // intersect tangent plane that goes through closest point with the direction // t = normal%(closest-pt) / normal%ray; double dot = normal % ray; // if it is 0, get out while we can if( dot < 0.00001 ) { // bad convergence, get out, do not modify anything return MB_SUCCESS; } double t = ( ( newPos - pt ) % normal ) / ( dot ); currentPoint = pt + t * ray; } eval_pt = currentPoint; diff = currentPoint - pt; distance = diff.length(); return MB_SUCCESS; }
Tag moab::SmoothFace::_edgeCtrlTag [private] |
Definition at line 211 of file SmoothFace.hpp.
Referenced by compute_control_points_on_edges(), compute_internal_control_points_on_facets(), DumpModelControlPoints(), evaluate_smooth_edge(), and init_bezier_edge().
Range moab::SmoothFace::_edges [private] |
Definition at line 180 of file SmoothFace.hpp.
Referenced by compute_control_points_on_edges(), compute_tangents_for_each_edge(), DumpModelControlPoints(), and init_gradient().
long moab::SmoothFace::_evaluationsCounter [private] |
Definition at line 237 of file SmoothFace.hpp.
Referenced by eval_counter(), and project_to_facets_main().
Tag moab::SmoothFace::_facetCtrlTag [private] |
Definition at line 217 of file SmoothFace.hpp.
Referenced by compute_internal_control_points_on_facets(), DumpModelControlPoints(), eval_bezier_patch(), and eval_bezier_patch_normal().
Tag moab::SmoothFace::_facetEdgeCtrlTag [private] |
Definition at line 225 of file SmoothFace.hpp.
Referenced by compute_internal_control_points_on_facets(), eval_bezier_patch(), and eval_bezier_patch_normal().
Tag moab::SmoothFace::_gradientTag [private] |
Definition at line 199 of file SmoothFace.hpp.
Referenced by append_smooth_tags(), compute_internal_control_points_on_facets(), eval_bezier_patch_normal(), get_normals_for_vertices(), init_bezier_edge(), init_gradient(), and is_at_vertex().
Tag moab::SmoothFace::_markTag [private] |
Definition at line 194 of file SmoothFace.hpp.
Referenced by compute_control_points_on_edges().
CartVect moab::SmoothFace::_maxim [private] |
Definition at line 177 of file SmoothFace.hpp.
Referenced by adjust_bounding_box(), bounding_box(), and init_gradient().
Interface* moab::SmoothFace::_mb [private] |
Definition at line 232 of file SmoothFace.hpp.
Referenced by area(), compute_control_points_on_edges(), compute_internal_control_points_on_facets(), compute_tangents_for_each_edge(), DumpModelControlPoints(), eval_bezier_patch(), eval_bezier_patch_normal(), evaluate_smooth_edge(), facet_area_coordinate(), find_edges_orientations(), get_normals_for_vertices(), init_bezier_edge(), init_gradient(), is_at_vertex(), project_to_facet(), and project_to_facet_plane().
CartVect moab::SmoothFace::_minim [private] |
Definition at line 176 of file SmoothFace.hpp.
Referenced by adjust_bounding_box(), bounding_box(), and init_gradient().
GeomTopoTool* moab::SmoothFace::_my_geomTopoTool [private] |
Definition at line 234 of file SmoothFace.hpp.
Referenced by project_to_facets_main(), and SmoothFace().
Range moab::SmoothFace::_nodes [private] |
Definition at line 181 of file SmoothFace.hpp.
Referenced by init_gradient().
EntityHandle moab::SmoothFace::_obb_root [private] |
Definition at line 235 of file SmoothFace.hpp.
Referenced by project_to_facets_main(), and SmoothFace().
Tag moab::SmoothFace::_planeTag [private] |
Definition at line 230 of file SmoothFace.hpp.
Referenced by append_smooth_tags(), facet_area_coordinate(), init_gradient(), and project_to_facet_plane().
EntityHandle moab::SmoothFace::_set [private] |
Definition at line 233 of file SmoothFace.hpp.
Referenced by DumpModelControlPoints(), init_gradient(), and SmoothFace().
Tag moab::SmoothFace::_tangentsTag [private] |
Definition at line 204 of file SmoothFace.hpp.
Referenced by compute_tangents_for_each_edge(), and init_bezier_edge().
Range moab::SmoothFace::_triangles [private] |
Definition at line 179 of file SmoothFace.hpp.
Referenced by area(), compute_internal_control_points_on_facets(), DumpModelControlPoints(), and init_gradient().