MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 #ifndef SPECTRALFUNCS_HPP 00002 #define SPECTRALFUNCS_HPP 00003 00004 #include <cfloat> 00005 00006 //====================================================== 00007 // from types.h 00008 //====================================================== 00009 00010 /* integer type to use for everything */ 00011 #if defined( USE_LONG ) 00012 #define INTEGER long 00013 #elif defined( USE_LONG_LONG ) 00014 #define INTEGER long long 00015 #elif defined( USE_SHORT ) 00016 #define INTEGER short 00017 #else 00018 #define INTEGER int 00019 #endif 00020 00021 /* when defined, use the given type for global indices instead of INTEGER */ 00022 #if defined( USE_GLOBAL_LONG_LONG ) 00023 #define GLOBAL_INT long long 00024 #elif defined( USE_GLOBAL_LONG ) 00025 #define GLOBAL_INT long 00026 #else 00027 #define GLOBAL_INT long 00028 #endif 00029 00030 /* floating point type to use for everything */ 00031 #if defined( USE_FLOAT ) 00032 typedef float real; 00033 #define floorr floorf 00034 #define ceilr ceilf 00035 #define sqrtr sqrtf 00036 #define fabsr fabsf 00037 #define cosr cosf 00038 #define sinr sinf 00039 #define EPS ( 128 * FLT_EPSILON ) 00040 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923F 00041 #elif defined( USE_LONG_DOUBLE ) 00042 typedef long double real; 00043 #define floorr floorl 00044 #define ceilr ceill 00045 #define sqrtr sqrtl 00046 #define fabsr fabsl 00047 #define cosr cosl 00048 #define sinr sinl 00049 #define EPS ( 128 * LDBL_EPSILON ) 00050 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923L 00051 #else 00052 typedef double real; 00053 #define floorr floor 00054 #define ceilr ceil 00055 #define sqrtr sqrt 00056 #define fabsr fabs 00057 #define cosr cos 00058 #define sinr sin 00059 #define EPS ( 128 * DBL_EPSILON ) 00060 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923 00061 #endif 00062 00063 /* apparently uint and ulong can be defined already in standard headers */ 00064 #define uint uint_ 00065 #define ulong ulong_ 00066 #define sint sint_ 00067 #define slong slong_ 00068 00069 typedef signed INTEGER sint; 00070 typedef unsigned INTEGER uint; 00071 #undef INTEGER 00072 00073 #ifdef GLOBAL_INT 00074 typedef signed GLOBAL_INT slong; 00075 typedef unsigned GLOBAL_INT ulong; 00076 #else 00077 typedef sint slong; 00078 typedef uint ulong; 00079 #endif 00080 00081 //====================================================== 00082 // from poly.h 00083 //====================================================== 00084 00085 /* 00086 For brevity's sake, some names have been shortened 00087 Quadrature rules 00088 Gauss -> Gauss-Legendre quadrature (open) 00089 Lobatto -> Gauss-Lobatto-Legendre quadrature (closed at both ends) 00090 Polynomial bases 00091 Legendre -> Legendre basis 00092 Gauss -> Lagrangian basis using Gauss quadrature nodes 00093 Lobatto -> Lagrangian basis using Lobatto quadrature nodes 00094 */ 00095 00096 /*-------------------------------------------------------------------------- 00097 Legendre Polynomial Matrix Computation 00098 (compute P_i(x_j) for i = 0, ..., n and a given set of x) 00099 --------------------------------------------------------------------------*/ 00100 00101 /* precondition: n >= 1 00102 inner index is x index (0 ... m-1); 00103 outer index is Legendre polynomial number (0 ... n) 00104 */ 00105 void legendre_matrix( const real* x, int m, real* P, int n ); 00106 00107 /* precondition: n >= 1 00108 inner index is Legendre polynomial number (0 ... n) 00109 outer index is x index (0 ... m-1); 00110 */ 00111 void legendre_matrix_t( const real* x, int m, real* P, int n ); 00112 00113 /* precondition: n >= 1 00114 compute P_i(x) with i = 0 ... n 00115 */ 00116 void legendre_row( real x, real* P, int n ); 00117 00118 /*-------------------------------------------------------------------------- 00119 Quadrature Nodes and Weights Calculation 00120 00121 call the _nodes function before calling the _weights function 00122 --------------------------------------------------------------------------*/ 00123 00124 void gauss_nodes( real* z, int n ); /* n nodes (order = 2n-1) */ 00125 void lobatto_nodes( real* z, int n ); /* n nodes (order = 2n-3) */ 00126 00127 void gauss_weights( const real* z, real* w, int n ); 00128 void lobatto_weights( const real* z, real* w, int n ); 00129 00130 /*-------------------------------------------------------------------------- 00131 Lagrangian to Legendre Change-of-basis Matrix 00132 --------------------------------------------------------------------------*/ 00133 00134 /* precondition: n >= 2 00135 given the Gauss quadrature rule (z,w,n), compute the square matrix J 00136 for transforming from the Gauss basis to the Legendre basis: 00137 00138 u_legendre(i) = sum_j J(i,j) u_gauss(j) 00139 00140 computes J = .5 (2i+1) w P (z ) 00141 ij j i j 00142 00143 in column major format (inner index is i, the Legendre index) 00144 */ 00145 void gauss_to_legendre( const real* z, const real* w, int n, real* J ); 00146 00147 /* precondition: n >= 2 00148 same as above, but 00149 in row major format (inner index is j, the Gauss index) 00150 */ 00151 void gauss_to_legendre_t( const real* z, const real* w, int n, real* J ); 00152 00153 /* precondition: n >= 3 00154 given the Lobatto quadrature rule (z,w,n), compute the square matrix J 00155 for transforming from the Lobatto basis to the Legendre basis: 00156 00157 u_legendre(i) = sum_j J(i,j) u_lobatto(j) 00158 00159 in column major format (inner index is i, the Legendre index) 00160 */ 00161 void lobatto_to_legendre( const real* z, const real* w, int n, real* J ); 00162 00163 /*-------------------------------------------------------------------------- 00164 Lagrangian basis function evaluation 00165 --------------------------------------------------------------------------*/ 00166 00167 /* given the Lagrangian nodes (z,n) and evaluation points (x,m) 00168 evaluate all Lagrangian basis functions at all points x 00169 00170 inner index of output J is the basis function index (row-major format) 00171 provide work array with space for 4*n doubles 00172 */ 00173 void lagrange_weights( const real* z, unsigned n, const real* x, unsigned m, real* J, real* work ); 00174 00175 /* given the Lagrangian nodes (z,n) and evaluation points (x,m) 00176 evaluate all Lagrangian basis functions and their derivatives 00177 00178 inner index of outputs J,D is the basis function index (row-major format) 00179 provide work array with space for 6*n doubles 00180 */ 00181 void lagrange_weights_deriv( const real* z, unsigned n, const real* x, unsigned m, real* J, real* D, real* work ); 00182 00183 /*-------------------------------------------------------------------------- 00184 Speedy Lagrangian Interpolation 00185 00186 Usage: 00187 00188 lagrange_data p; 00189 lagrange_setup(&p,z,n); * setup for nodes z[0 ... n-1] * 00190 00191 the weights 00192 p->J [0 ... n-1] interpolation weights 00193 p->D [0 ... n-1] 1st derivative weights 00194 p->D2[0 ... n-1] 2nd derivative weights 00195 are computed for a given x with: 00196 lagrange_0(p,x); * compute p->J * 00197 lagrange_1(p,x); * compute p->J, p->D * 00198 lagrange_2(p,x); * compute p->J, p->D, p->D2 * 00199 lagrange_2u(p); * compute p->D2 after call of lagrange_1(p,x); * 00200 These functions use the z array supplied to setup 00201 (that pointer should not be freed between calls) 00202 Weights for x=z[0] and x=z[n-1] are computed during setup; access as: 00203 p->J_z0, etc. and p->J_zn, etc. 00204 00205 lagrange_free(&p); * deallocate memory allocated by setup * 00206 --------------------------------------------------------------------------*/ 00207 00208 typedef struct 00209 { 00210 unsigned n; /* number of Lagrange nodes */ 00211 const real* z; /* Lagrange nodes (user-supplied) */ 00212 real *J, *D, *D2; /* weights for 0th,1st,2nd derivatives */ 00213 real *J_z0, *D_z0, *D2_z0; /* ditto at z[0] (computed at setup) */ 00214 real *J_zn, *D_zn, *D2_zn; /* ditto at z[n-1] (computed at setup) */ 00215 real *w, *d, *u0, *v0, *u1, *v1, *u2, *v2; /* work data */ 00216 } lagrange_data; 00217 00218 void lagrange_setup( lagrange_data* p, const real* z, unsigned n ); 00219 void lagrange_free( lagrange_data* p ); 00220 00221 void lagrange_0( lagrange_data* p, real x ); 00222 void lagrange_1( lagrange_data* p, real x ); 00223 void lagrange_2( lagrange_data* p, real x ); 00224 void lagrange_2u( lagrange_data* p ); 00225 00226 //====================================================== 00227 // from tensor.h 00228 //====================================================== 00229 00230 /*-------------------------------------------------------------------------- 00231 1-,2-,3-d Tensor Application 00232 00233 the 3d case: 00234 tensor_f3(R,mr,nr, S,ms,ns, T,mt,nt, u,v, work1,work2) 00235 gives v = [ R (x) S (x) T ] u 00236 where R is mr x nr, S is ms x ns, T is mt x nt, 00237 each in row- or column-major format according to f := r | c 00238 u is nr x ns x nt in column-major format (inner index is r) 00239 v is mr x ms x mt in column-major format (inner index is r) 00240 --------------------------------------------------------------------------*/ 00241 00242 void tensor_c1( const real* R, unsigned mr, unsigned nr, const real* u, real* v ); 00243 void tensor_r1( const real* R, unsigned mr, unsigned nr, const real* u, real* v ); 00244 00245 /* work holds mr*ns reals */ 00246 void tensor_c2( const real* R, 00247 unsigned mr, 00248 unsigned nr, 00249 const real* S, 00250 unsigned ms, 00251 unsigned ns, 00252 const real* u, 00253 real* v, 00254 real* work ); 00255 void tensor_r2( const real* R, 00256 unsigned mr, 00257 unsigned nr, 00258 const real* S, 00259 unsigned ms, 00260 unsigned ns, 00261 const real* u, 00262 real* v, 00263 real* work ); 00264 00265 /* work1 holds mr*ns*nt reals, 00266 work2 holds mr*ms*nt reals */ 00267 void tensor_c3( const real* R, 00268 unsigned mr, 00269 unsigned nr, 00270 const real* S, 00271 unsigned ms, 00272 unsigned ns, 00273 const real* T, 00274 unsigned mt, 00275 unsigned nt, 00276 const real* u, 00277 real* v, 00278 real* work1, 00279 real* work2 ); 00280 void tensor_r3( const real* R, 00281 unsigned mr, 00282 unsigned nr, 00283 const real* S, 00284 unsigned ms, 00285 unsigned ns, 00286 const real* T, 00287 unsigned mt, 00288 unsigned nt, 00289 const real* u, 00290 real* v, 00291 real* work1, 00292 real* work2 ); 00293 00294 /*-------------------------------------------------------------------------- 00295 1-,2-,3-d Tensor Application of Row Vectors (for Interpolation) 00296 00297 the 3d case: 00298 v = tensor_i3(Jr,nr, Js,ns, Jt,nt, u, work) 00299 same effect as tensor_r3(Jr,1,nr, Js,1,ns, Jt,1,nt, u,&v, work1,work2): 00300 gives v = [ Jr (x) Js (x) Jt ] u 00301 where Jr, Js, Jt are row vectors (interpolation weights) 00302 u is nr x ns x nt in column-major format (inner index is r) 00303 v is a scalar 00304 --------------------------------------------------------------------------*/ 00305 00306 real tensor_i1( const real* Jr, unsigned nr, const real* u ); 00307 00308 /* work holds ns reals */ 00309 real tensor_i2( const real* Jr, unsigned nr, const real* Js, unsigned ns, const real* u, real* work ); 00310 00311 /* work holds ns*nt + nt reals */ 00312 real tensor_i3( const real* Jr, 00313 unsigned nr, 00314 const real* Js, 00315 unsigned ns, 00316 const real* Jt, 00317 unsigned nt, 00318 const real* u, 00319 real* work ); 00320 00321 /*-------------------------------------------------------------------------- 00322 1-,2-,3-d Tensor Application of Row Vectors 00323 for simultaneous Interpolation and Gradient computation 00324 00325 the 3d case: 00326 v = tensor_ig3(Jr,Dr,nr, Js,Ds,ns, Jt,Dt,nt, u,g, work) 00327 gives v = [ Jr (x) Js (x) Jt ] u 00328 g_0 = [ Dr (x) Js (x) Jt ] u 00329 g_1 = [ Jr (x) Ds (x) Jt ] u 00330 g_2 = [ Jr (x) Js (x) Dt ] u 00331 where Jr,Dr,Js,Ds,Jt,Dt are row vectors 00332 (interpolation & derivative weights) 00333 u is nr x ns x nt in column-major format (inner index is r) 00334 v is a scalar, g is an array of 3 reals 00335 --------------------------------------------------------------------------*/ 00336 00337 real tensor_ig1( const real* Jr, const real* Dr, unsigned nr, const real* u, real* g ); 00338 00339 /* work holds 2*ns reals */ 00340 real tensor_ig2( const real* Jr, 00341 const real* Dr, 00342 unsigned nr, 00343 const real* Js, 00344 const real* Ds, 00345 unsigned ns, 00346 const real* u, 00347 real* g, 00348 real* work ); 00349 00350 /* work holds 2*ns*nt + 3*ns reals */ 00351 real tensor_ig3( const real* Jr, 00352 const real* Dr, 00353 unsigned nr, 00354 const real* Js, 00355 const real* Ds, 00356 unsigned ns, 00357 const real* Jt, 00358 const real* Dt, 00359 unsigned nt, 00360 const real* u, 00361 real* g, 00362 real* work ); 00363 00364 //====================================================== 00365 // from findpt.h 00366 //====================================================== 00367 00368 typedef struct 00369 { 00370 const real* xw[2]; /* geometry data */ 00371 real* z[2]; /* lobatto nodes */ 00372 lagrange_data ld[2]; /* interpolation, derivative weights & data */ 00373 unsigned nptel; /* nodes per element */ 00374 struct findpt_hash_data_2* hash; /* geometric hashing data */ 00375 struct findpt_listel *list, **sorted, **end; 00376 /* pre-allocated list of elements to 00377 check (found by hashing), and 00378 pre-allocated list of pointers into 00379 the first list for sorting */ 00380 struct findpt_opt_data_2* od; /* data for the optimization algorithm */ 00381 real* od_work; 00382 } findpt_data_2; 00383 00384 typedef struct 00385 { 00386 const real* xw[3]; /* geometry data */ 00387 real* z[3]; /* lobatto nodes */ 00388 lagrange_data ld[3]; /* interpolation, derivative weights & data */ 00389 unsigned nptel; /* nodes per element */ 00390 struct findpt_hash_data_3* hash; /* geometric hashing data */ 00391 struct findpt_listel *list, **sorted, **end; 00392 /* pre-allocated list of elements to 00393 check (found by hashing), and 00394 pre-allocated list of pointers into 00395 the first list for sorting */ 00396 struct findpt_opt_data_3* od; /* data for the optimization algorithm */ 00397 real* od_work; 00398 } findpt_data_3; 00399 00400 findpt_data_2* findpt_setup_2( const real* const xw[2], 00401 const unsigned n[2], 00402 uint nel, 00403 uint max_hash_size, 00404 real bbox_tol ); 00405 findpt_data_3* findpt_setup_3( const real* const xw[3], 00406 const unsigned n[3], 00407 uint nel, 00408 uint max_hash_size, 00409 real bbox_tol ); 00410 00411 void findpt_free_2( findpt_data_2* p ); 00412 void findpt_free_3( findpt_data_3* p ); 00413 00414 const real* findpt_allbnd_2( const findpt_data_2* p ); 00415 const real* findpt_allbnd_3( const findpt_data_3* p ); 00416 00417 typedef int ( *findpt_func )( void*, const real*, int, uint*, real*, real* ); 00418 int findpt_2( findpt_data_2* p, const real x[2], int guess, uint* el, real r[2], real* dist ); 00419 int findpt_3( findpt_data_3* p, const real x[3], int guess, uint* el, real r[3], real* dist ); 00420 00421 inline void findpt_weights_2( findpt_data_2* p, const real r[2] ) 00422 { 00423 lagrange_0( &p->ld[0], r[0] ); 00424 lagrange_0( &p->ld[1], r[1] ); 00425 } 00426 00427 inline void findpt_weights_3( findpt_data_3* p, const real r[3] ) 00428 { 00429 lagrange_0( &p->ld[0], r[0] ); 00430 lagrange_0( &p->ld[1], r[1] ); 00431 lagrange_0( &p->ld[2], r[2] ); 00432 } 00433 00434 inline double findpt_eval_2( findpt_data_2* p, const real* u ) 00435 { 00436 return tensor_i2( p->ld[0].J, p->ld[0].n, p->ld[1].J, p->ld[1].n, u, p->od_work ); 00437 } 00438 00439 inline double findpt_eval_3( findpt_data_3* p, const real* u ) 00440 { 00441 return tensor_i3( p->ld[0].J, p->ld[0].n, p->ld[1].J, p->ld[1].n, p->ld[2].J, p->ld[2].n, u, p->od_work ); 00442 } 00443 00444 //====================================================== 00445 // from extrafindpt.h 00446 //====================================================== 00447 00448 typedef struct 00449 { 00450 unsigned constraints; 00451 unsigned dn, d1, d2; 00452 real *x[3], *fdn[3]; 00453 } opt_face_data_3; 00454 00455 typedef struct 00456 { 00457 unsigned constraints; 00458 unsigned de, d1, d2; 00459 real *x[3], *fd1[3], *fd2[3]; 00460 } opt_edge_data_3; 00461 00462 typedef struct 00463 { 00464 unsigned constraints; 00465 real x[3], jac[9]; 00466 } opt_point_data_3; 00467 00468 typedef struct 00469 { 00470 lagrange_data* ld; 00471 unsigned size[4]; 00472 const real* elx[3]; 00473 opt_face_data_3 fd; 00474 opt_edge_data_3 ed; 00475 opt_point_data_3 pd; 00476 real* work; 00477 real x[3], jac[9]; 00478 } opt_data_3; 00479 00480 void opt_alloc_3( opt_data_3* p, lagrange_data* ld ); 00481 void opt_free_3( opt_data_3* p ); 00482 double opt_findpt_3( opt_data_3* p, const real* const elx[3], const real xstar[3], real r[3], unsigned* constr ); 00483 void opt_vol_set_intp_3( opt_data_3* p, const real r[3] ); 00484 00485 const unsigned opt_no_constraints_2 = 3 + 1; 00486 const unsigned opt_no_constraints_3 = 9 + 3 + 1; 00487 00488 /* for 2d spectralQuad */ 00489 /*-------------------------------------------------------------------------- 00490 00491 2 - D 00492 00493 --------------------------------------------------------------------------*/ 00494 00495 typedef struct 00496 { 00497 unsigned constraints; 00498 unsigned de, d1; 00499 real *x[2], *fd1[2]; 00500 } opt_edge_data_2; 00501 00502 typedef struct 00503 { 00504 unsigned constraints; 00505 real x[2], jac[4]; 00506 } opt_point_data_2; 00507 00508 typedef struct 00509 { 00510 lagrange_data* ld; 00511 unsigned size[3]; 00512 const real* elx[2]; 00513 opt_edge_data_2 ed; 00514 opt_point_data_2 pd; 00515 real* work; 00516 real x[2], jac[4]; 00517 } opt_data_2; 00518 void opt_alloc_2( opt_data_2* p, lagrange_data* ld ); 00519 void opt_free_2( opt_data_2* p ); 00520 double opt_findpt_2( opt_data_2* p, const real* const elx[2], const real xstar[2], real r[2], unsigned* constr ); 00521 00522 #endif