MOAB: Mesh Oriented datABase
(version 5.4.1)
|
#include "moab/verdict.h"
#include "VerdictVector.hpp"
#include "V_GaussIntegration.hpp"
#include "verdict_defines.hpp"
#include <memory.h>
Go to the source code of this file.
Defines | |
#define | VERDICT_EXPORTS |
#define | make_hex_nodes(coord, pos) |
#define | make_edge_length_squares(edges, lengths) |
#define | SQR(x) ( ( x ) * ( x ) ) |
Functions | |
int | v_hex_get_weight (VerdictVector &v1, VerdictVector &v2, VerdictVector &v3) |
weights based on the average size of a hex | |
C_FUNC_DEF void | v_set_hex_size (double size) |
returns the average volume of a hex | |
void | make_hex_edges (double coordinates[][3], VerdictVector edges[12]) |
make VerdictVectors from coordinates | |
void | localize_hex_coordinates (double coordinates[][3], VerdictVector position[8]) |
double | safe_ratio3 (const double numerator, const double denominator, const double max_ratio) |
double | safe_ratio (const double numerator, const double denominator) |
double | condition_comp (const VerdictVector &xxi, const VerdictVector &xet, const VerdictVector &xze) |
double | oddy_comp (const VerdictVector &xxi, const VerdictVector &xet, const VerdictVector &xze) |
double | hex_edge_length (int max_min, double coordinates[][3]) |
calcualates edge lengths of a hex | |
double | diag_length (int max_min, double coordinates[][3]) |
VerdictVector | calc_hex_efg (int efg_index, VerdictVector coordinates[8]) |
calculates efg values | |
C_FUNC_DEF double | v_hex_edge_ratio (int, double coordinates[][3]) |
Calculates hex edge ratio metric. | |
C_FUNC_DEF double | v_hex_max_edge_ratio (int, double coordinates[][3]) |
Calculates hex maximum of edge ratio. | |
C_FUNC_DEF double | v_hex_skew (int, double coordinates[][3]) |
Calculates hex skew metric. | |
C_FUNC_DEF double | v_hex_taper (int, double coordinates[][3]) |
Calculates hex taper metric. | |
C_FUNC_DEF double | v_hex_volume (int, double coordinates[][3]) |
Calculates hex volume. | |
C_FUNC_DEF double | v_hex_stretch (int, double coordinates[][3]) |
Calculates hex stretch metric. | |
C_FUNC_DEF double | v_hex_diagonal (int, double coordinates[][3]) |
Calculates hex diagonal metric. | |
C_FUNC_DEF double | v_hex_dimension (int, double coordinates[][3]) |
Calculates hex dimension metric. | |
C_FUNC_DEF double | v_hex_oddy (int, double coordinates[][3]) |
Calculates hex oddy metric. | |
C_FUNC_DEF double | v_hex_med_aspect_frobenius (int, double coordinates[][3]) |
Calculates hex condition metric. | |
C_FUNC_DEF double | v_hex_max_aspect_frobenius (int, double coordinates[][3]) |
Calculates hex condition metric. | |
C_FUNC_DEF double | v_hex_condition (int, double coordinates[][3]) |
C_FUNC_DEF double | v_hex_jacobian (int, double coordinates[][3]) |
Calculates hex jacobian metric. | |
C_FUNC_DEF double | v_hex_scaled_jacobian (int, double coordinates[][3]) |
Calculates hex scaled jacobian metric. | |
C_FUNC_DEF double | v_hex_shear (int, double coordinates[][3]) |
Calculates hex shear metric. | |
C_FUNC_DEF double | v_hex_shape (int, double coordinates[][3]) |
Calculates hex shape metric. | |
C_FUNC_DEF double | v_hex_relative_size_squared (int, double coordinates[][3]) |
Calculates hex relative size metric. | |
C_FUNC_DEF double | v_hex_shape_and_size (int num_nodes, double coordinates[][3]) |
Calculates hex shape-size metric. | |
C_FUNC_DEF double | v_hex_shear_and_size (int num_nodes, double coordinates[][3]) |
Calculates hex shear-size metric. | |
C_FUNC_DEF double | v_hex_distortion (int num_nodes, double coordinates[][3]) |
Calculates hex distortion metric. | |
C_FUNC_DEF void | v_hex_quality (int num_nodes, double coordinates[][3], unsigned int metrics_request_flag, HexMetricVals *metric_vals) |
Calculates quality metrics for hexahedral elements. | |
Variables | |
double | verdict_hex_size = 0 |
the average volume of a hex |
#define make_edge_length_squares | ( | edges, | |
lengths | |||
) |
{ \ for( int melii = 0; melii < 12; melii++ ) \ ( lengths )[melii] = ( edges )[melii].length_squared(); \ }
Definition at line 68 of file V_HexMetric.cpp.
Referenced by v_hex_quality().
#define make_hex_nodes | ( | coord, | |
pos | |||
) |
for( int mhcii = 0; mhcii < 8; mhcii++ ) \ { \ ( pos )[mhcii].set( ( coord )[mhcii][0], ( coord )[mhcii][1], ( coord )[mhcii][2] ); \ }
Definition at line 62 of file V_HexMetric.cpp.
Referenced by v_hex_jacobian(), v_hex_max_aspect_frobenius(), v_hex_max_edge_ratio(), v_hex_med_aspect_frobenius(), v_hex_oddy(), v_hex_quality(), v_hex_relative_size_squared(), v_hex_scaled_jacobian(), v_hex_shape(), v_hex_shear(), v_hex_skew(), v_hex_taper(), and v_hex_volume().
#define SQR | ( | x | ) | ( ( x ) * ( x ) ) |
Definition at line 783 of file V_HexMetric.cpp.
Referenced by v_hex_dimension().
#define VERDICT_EXPORTS |
Definition at line 23 of file V_HexMetric.cpp.
VerdictVector calc_hex_efg | ( | int | efg_index, |
VerdictVector | coordinates[8] | ||
) |
calculates efg values
Definition at line 430 of file V_HexMetric.cpp.
References VerdictVector::set().
Referenced by v_hex_jacobian(), v_hex_max_aspect_frobenius(), v_hex_max_edge_ratio(), v_hex_oddy(), v_hex_quality(), v_hex_scaled_jacobian(), v_hex_skew(), v_hex_taper(), and v_hex_volume().
{ VerdictVector efg; switch( efg_index ) { case 1: efg = coordinates[1]; efg += coordinates[2]; efg += coordinates[5]; efg += coordinates[6]; efg -= coordinates[0]; efg -= coordinates[3]; efg -= coordinates[4]; efg -= coordinates[7]; break; case 2: efg = coordinates[2]; efg += coordinates[3]; efg += coordinates[6]; efg += coordinates[7]; efg -= coordinates[0]; efg -= coordinates[1]; efg -= coordinates[4]; efg -= coordinates[5]; break; case 3: efg = coordinates[4]; efg += coordinates[5]; efg += coordinates[6]; efg += coordinates[7]; efg -= coordinates[0]; efg -= coordinates[1]; efg -= coordinates[2]; efg -= coordinates[3]; break; case 12: efg = coordinates[0]; efg += coordinates[2]; efg += coordinates[4]; efg += coordinates[6]; efg -= coordinates[1]; efg -= coordinates[3]; efg -= coordinates[5]; efg -= coordinates[7]; break; case 13: efg = coordinates[0]; efg += coordinates[3]; efg += coordinates[5]; efg += coordinates[6]; efg -= coordinates[1]; efg -= coordinates[2]; efg -= coordinates[4]; efg -= coordinates[7]; break; case 23: efg = coordinates[0]; efg += coordinates[1]; efg += coordinates[6]; efg += coordinates[7]; efg -= coordinates[2]; efg -= coordinates[3]; efg -= coordinates[4]; efg -= coordinates[5]; break; case 123: efg = coordinates[0]; efg += coordinates[2]; efg += coordinates[5]; efg += coordinates[7]; efg -= coordinates[1]; efg -= coordinates[5]; efg -= coordinates[6]; efg -= coordinates[2]; break; default: efg.set( 0, 0, 0 ); } return efg; }
double condition_comp | ( | const VerdictVector & | xxi, |
const VerdictVector & | xet, | ||
const VerdictVector & | xze | ||
) |
Definition at line 227 of file V_HexMetric.cpp.
References VERDICT_DBL_MAX, and VERDICT_DBL_MIN.
Referenced by v_hex_max_aspect_frobenius(), v_hex_med_aspect_frobenius(), and v_hex_quality().
{ double det = xxi % ( xet * xze ); if( det <= VERDICT_DBL_MIN ) { return VERDICT_DBL_MAX; } double term1 = xxi % xxi + xet % xet + xze % xze; double term2 = ( ( xxi * xet ) % ( xxi * xet ) ) + ( ( xet * xze ) % ( xet * xze ) ) + ( ( xze * xxi ) % ( xze * xxi ) ); return sqrt( term1 * term2 ) / det; }
double diag_length | ( | int | max_min, |
double | coordinates[][3] | ||
) |
Definition at line 380 of file V_HexMetric.cpp.
References VERDICT_MAX, and VERDICT_MIN.
Referenced by v_hex_diagonal(), v_hex_quality(), and v_hex_stretch().
{ double temp[3], diag[4]; int i; // lengths^2 f diag nals for( i = 0; i < 3; i++ ) { temp[i] = coordinates[6][i] - coordinates[0][i]; temp[i] = temp[i] * temp[i]; } diag[0] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[4][i] - coordinates[2][i]; temp[i] = temp[i] * temp[i]; } diag[1] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[7][i] - coordinates[1][i]; temp[i] = temp[i] * temp[i]; } diag[2] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[5][i] - coordinates[3][i]; temp[i] = temp[i] * temp[i]; } diag[3] = sqrt( temp[0] + temp[1] + temp[2] ); double diagonal = diag[0]; if( max_min == 0 ) // Return min diagonal { for( i = 1; i < 4; i++ ) diagonal = VERDICT_MIN( diagonal, diag[i] ); return (double)diagonal; } else // Return max diagonal { for( i = 1; i < 4; i++ ) diagonal = VERDICT_MAX( diagonal, diag[i] ); return (double)diagonal; } }
double hex_edge_length | ( | int | max_min, |
double | coordinates[][3] | ||
) |
calcualates edge lengths of a hex
Definition at line 274 of file V_HexMetric.cpp.
References VERDICT_MAX, and VERDICT_MIN.
Referenced by v_hex_stretch().
{ double temp[3], edge[12]; int i; // lengths^2 of edges for( i = 0; i < 3; i++ ) { temp[i] = coordinates[1][i] - coordinates[0][i]; temp[i] = temp[i] * temp[i]; } edge[0] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[2][i] - coordinates[1][i]; temp[i] = temp[i] * temp[i]; } edge[1] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[3][i] - coordinates[2][i]; temp[i] = temp[i] * temp[i]; } edge[2] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[0][i] - coordinates[3][i]; temp[i] = temp[i] * temp[i]; } edge[3] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[5][i] - coordinates[4][i]; temp[i] = temp[i] * temp[i]; } edge[4] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[6][i] - coordinates[5][i]; temp[i] = temp[i] * temp[i]; } edge[5] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[7][i] - coordinates[6][i]; temp[i] = temp[i] * temp[i]; } edge[6] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[4][i] - coordinates[7][i]; temp[i] = temp[i] * temp[i]; } edge[7] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[4][i] - coordinates[0][i]; temp[i] = temp[i] * temp[i]; } edge[8] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[5][i] - coordinates[1][i]; temp[i] = temp[i] * temp[i]; } edge[9] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[6][i] - coordinates[2][i]; temp[i] = temp[i] * temp[i]; } edge[10] = sqrt( temp[0] + temp[1] + temp[2] ); for( i = 0; i < 3; i++ ) { temp[i] = coordinates[7][i] - coordinates[3][i]; temp[i] = temp[i] * temp[i]; } edge[11] = sqrt( temp[0] + temp[1] + temp[2] ); double _edge = edge[0]; if( max_min == 0 ) { for( i = 1; i < 12; i++ ) _edge = VERDICT_MIN( _edge, edge[i] ); return (double)_edge; } else { for( i = 1; i < 12; i++ ) _edge = VERDICT_MAX( _edge, edge[i] ); return (double)_edge; } }
void localize_hex_coordinates | ( | double | coordinates[][3], |
VerdictVector | position[8] | ||
) |
localizes hex coordinates
Definition at line 106 of file V_HexMetric.cpp.
References VerdictVector::set(), VerdictVector::x(), VerdictVector::y(), and VerdictVector::z().
{ int ii; for( ii = 0; ii < 8; ii++ ) { position[ii].set( coordinates[ii][0], coordinates[ii][1], coordinates[ii][2] ); } // ... Make centroid of element the center of coordinate system VerdictVector point_1256 = position[1]; point_1256 += position[2]; point_1256 += position[5]; point_1256 += position[6]; VerdictVector point_0374 = position[0]; point_0374 += position[3]; point_0374 += position[7]; point_0374 += position[4]; VerdictVector centroid = point_1256; centroid += point_0374; centroid /= 8.0; int i; for( i = 0; i < 8; i++ ) position[i] -= centroid; // ... Rotate element such that center of side 1-2 and 0-3 define X axis double DX = point_1256.x() - point_0374.x(); double DY = point_1256.y() - point_0374.y(); double DZ = point_1256.z() - point_0374.z(); double AMAGX = sqrt( DX * DX + DZ * DZ ); double AMAGY = sqrt( DX * DX + DY * DY + DZ * DZ ); double FMAGX = AMAGX == 0.0 ? 1.0 : 0.0; double FMAGY = AMAGY == 0.0 ? 1.0 : 0.0; double CZ = DX / ( AMAGX + FMAGX ) + FMAGX; double SZ = DZ / ( AMAGX + FMAGX ); double CY = AMAGX / ( AMAGY + FMAGY ) + FMAGY; double SY = DY / ( AMAGY + FMAGY ); double temp; for( i = 0; i < 8; i++ ) { temp = CY * CZ * position[i].x() + CY * SZ * position[i].z() + SY * position[i].y(); position[i].y( -SY * CZ * position[i].x() - SY * SZ * position[i].z() + CY * position[i].y() ); position[i].z( -SZ * position[i].x() + CZ * position[i].z() ); position[i].x( temp ); } // ... Now, rotate about Y VerdictVector delta = -position[0]; delta -= position[1]; delta += position[2]; delta += position[3]; delta -= position[4]; delta -= position[5]; delta += position[6]; delta += position[7]; DY = delta.y(); DZ = delta.z(); AMAGY = sqrt( DY * DY + DZ * DZ ); FMAGY = AMAGY == 0.0 ? 1.0 : 0.0; double CX = DY / ( AMAGY + FMAGY ) + FMAGY; double SX = DZ / ( AMAGY + FMAGY ); for( i = 0; i < 8; i++ ) { temp = CX * position[i].y() + SX * position[i].z(); position[i].z( -SX * position[i].y() + CX * position[i].z() ); position[i].y( temp ); } }
void make_hex_edges | ( | double | coordinates[][3], |
VerdictVector | edges[12] | ||
) |
make VerdictVectors from coordinates
Definition at line 75 of file V_HexMetric.cpp.
References VerdictVector::set().
Referenced by v_hex_edge_ratio(), and v_hex_quality().
{ edges[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); edges[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); edges[2].set( coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1], coordinates[3][2] - coordinates[2][2] ); edges[3].set( coordinates[0][0] - coordinates[3][0], coordinates[0][1] - coordinates[3][1], coordinates[0][2] - coordinates[3][2] ); edges[4].set( coordinates[5][0] - coordinates[4][0], coordinates[5][1] - coordinates[4][1], coordinates[5][2] - coordinates[4][2] ); edges[5].set( coordinates[6][0] - coordinates[5][0], coordinates[6][1] - coordinates[5][1], coordinates[6][2] - coordinates[5][2] ); edges[6].set( coordinates[7][0] - coordinates[6][0], coordinates[7][1] - coordinates[6][1], coordinates[7][2] - coordinates[6][2] ); edges[7].set( coordinates[4][0] - coordinates[7][0], coordinates[4][1] - coordinates[7][1], coordinates[4][2] - coordinates[7][2] ); edges[8].set( coordinates[4][0] - coordinates[0][0], coordinates[4][1] - coordinates[0][1], coordinates[4][2] - coordinates[0][2] ); edges[9].set( coordinates[5][0] - coordinates[1][0], coordinates[5][1] - coordinates[1][1], coordinates[5][2] - coordinates[1][2] ); edges[10].set( coordinates[6][0] - coordinates[2][0], coordinates[6][1] - coordinates[2][1], coordinates[6][2] - coordinates[2][2] ); edges[11].set( coordinates[7][0] - coordinates[3][0], coordinates[7][1] - coordinates[3][1], coordinates[7][2] - coordinates[3][2] ); }
double oddy_comp | ( | const VerdictVector & | xxi, |
const VerdictVector & | xet, | ||
const VerdictVector & | xze | ||
) |
Definition at line 243 of file V_HexMetric.cpp.
References VERDICT_DBL_MAX, and VERDICT_DBL_MIN.
Referenced by v_hex_oddy(), and v_hex_quality().
{ static const double third = 1.0 / 3.0; double g11, g12, g13, g22, g23, g33, rt_g; g11 = xxi % xxi; g12 = xxi % xet; g13 = xxi % xze; g22 = xet % xet; g23 = xet % xze; g33 = xze % xze; rt_g = xxi % ( xet * xze ); double oddy_metric; if( rt_g > VERDICT_DBL_MIN ) { double norm_G_squared = g11 * g11 + 2.0 * g12 * g12 + 2.0 * g13 * g13 + g22 * g22 + 2.0 * g23 * g23 + g33 * g33; double norm_J_squared = g11 + g22 + g33; oddy_metric = ( norm_G_squared - third * norm_J_squared * norm_J_squared ) / pow( rt_g, 4. * third ); } else oddy_metric = VERDICT_DBL_MAX; return oddy_metric; }
double safe_ratio | ( | const double | numerator, |
const double | denominator | ||
) |
Definition at line 209 of file V_HexMetric.cpp.
References VERDICT_DBL_MAX, and VERDICT_DBL_MIN.
Referenced by v_hex_diagonal(), v_hex_max_edge_ratio(), v_hex_quality(), v_hex_stretch(), and v_hex_taper().
{ double return_value; const double filter_n = VERDICT_DBL_MAX; const double filter_d = VERDICT_DBL_MIN; if( fabs( numerator ) <= filter_n && fabs( denominator ) >= filter_d ) { return_value = numerator / denominator; } else { return_value = VERDICT_DBL_MAX; } return return_value; }
double safe_ratio3 | ( | const double | numerator, |
const double | denominator, | ||
const double | max_ratio | ||
) |
Definition at line 186 of file V_HexMetric.cpp.
{ // this filter is essential for good running time in practice double return_value; const double filter_n = max_ratio * 1.0e-16; const double filter_d = 1.0e-16; if( fabs( numerator ) <= filter_n && fabs( denominator ) >= filter_d ) { return_value = numerator / denominator; } else { return_value = fabs( numerator ) / max_ratio >= fabs( denominator ) ? ( ( numerator >= 0.0 && denominator >= 0.0 ) || ( numerator < 0.0 && denominator < 0.0 ) ? max_ratio : -max_ratio ) : numerator / denominator; } return return_value; }
C_FUNC_DEF double v_hex_condition | ( | int | , |
double | coordinates[][3] | ||
) |
The maximum Frobenius condition of a hex, a.k.a. condition NB (P. Pebay 01/25/07): this method is maintained for backwards compatibility only. It will become deprecated at some point.
Definition at line 1371 of file V_HexMetric.cpp.
References v_hex_max_aspect_frobenius().
Referenced by moab::VerdictWrapper::quality_measure().
{ return v_hex_max_aspect_frobenius( 8, coordinates ); }
C_FUNC_DEF double v_hex_diagonal | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex diagonal metric.
diagonal ratio of a hex
Minimum diagonal length / maximum diagonal length
Definition at line 771 of file V_HexMetric.cpp.
References diag_length(), safe_ratio(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ double min_diag = diag_length( 0, coordinates ); double max_diag = diag_length( 1, coordinates ); double diagonal = safe_ratio( min_diag, max_diag ); if( diagonal > 0 ) return (double)VERDICT_MIN( diagonal, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( diagonal, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_dimension | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex dimension metric.
dimension of a hex
Pronto-specific characteristic length for stable time step calculation. Char_length = Volume / 2 grad Volume
Definition at line 791 of file V_HexMetric.cpp.
References SQR.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ double gradop[9][4]; double x1 = coordinates[0][0]; double x2 = coordinates[1][0]; double x3 = coordinates[2][0]; double x4 = coordinates[3][0]; double x5 = coordinates[4][0]; double x6 = coordinates[5][0]; double x7 = coordinates[6][0]; double x8 = coordinates[7][0]; double y1 = coordinates[0][1]; double y2 = coordinates[1][1]; double y3 = coordinates[2][1]; double y4 = coordinates[3][1]; double y5 = coordinates[4][1]; double y6 = coordinates[5][1]; double y7 = coordinates[6][1]; double y8 = coordinates[7][1]; double z1 = coordinates[0][2]; double z2 = coordinates[1][2]; double z3 = coordinates[2][2]; double z4 = coordinates[3][2]; double z5 = coordinates[4][2]; double z6 = coordinates[5][2]; double z7 = coordinates[6][2]; double z8 = coordinates[7][2]; double z24 = z2 - z4; double z52 = z5 - z2; double z45 = z4 - z5; gradop[1][1] = ( y2 * ( z6 - z3 - z45 ) + y3 * z24 + y4 * ( z3 - z8 - z52 ) + y5 * ( z8 - z6 - z24 ) + y6 * z52 + y8 * z45 ) / 12.0; double z31 = z3 - z1; double z63 = z6 - z3; double z16 = z1 - z6; gradop[2][1] = ( y3 * ( z7 - z4 - z16 ) + y4 * z31 + y1 * ( z4 - z5 - z63 ) + y6 * ( z5 - z7 - z31 ) + y7 * z63 + y5 * z16 ) / 12.0; double z42 = z4 - z2; double z74 = z7 - z4; double z27 = z2 - z7; gradop[3][1] = ( y4 * ( z8 - z1 - z27 ) + y1 * z42 + y2 * ( z1 - z6 - z74 ) + y7 * ( z6 - z8 - z42 ) + y8 * z74 + y6 * z27 ) / 12.0; double z13 = z1 - z3; double z81 = z8 - z1; double z38 = z3 - z8; gradop[4][1] = ( y1 * ( z5 - z2 - z38 ) + y2 * z13 + y3 * ( z2 - z7 - z81 ) + y8 * ( z7 - z5 - z13 ) + y5 * z81 + y7 * z38 ) / 12.0; double z86 = z8 - z6; double z18 = z1 - z8; double z61 = z6 - z1; gradop[5][1] = ( y8 * ( z4 - z7 - z61 ) + y7 * z86 + y6 * ( z7 - z2 - z18 ) + y1 * ( z2 - z4 - z86 ) + y4 * z18 + y2 * z61 ) / 12.0; double z57 = z5 - z7; double z25 = z2 - z5; double z72 = z7 - z2; gradop[6][1] = ( y5 * ( z1 - z8 - z72 ) + y8 * z57 + y7 * ( z8 - z3 - z25 ) + y2 * ( z3 - z1 - z57 ) + y1 * z25 + y3 * z72 ) / 12.0; double z68 = z6 - z8; double z36 = z3 - z6; double z83 = z8 - z3; gradop[7][1] = ( y6 * ( z2 - z5 - z83 ) + y5 * z68 + y8 * ( z5 - z4 - z36 ) + y3 * ( z4 - z2 - z68 ) + y2 * z36 + y4 * z83 ) / 12.0; double z75 = z7 - z5; double z47 = z4 - z7; double z54 = z5 - z4; gradop[8][1] = ( y7 * ( z3 - z6 - z54 ) + y6 * z75 + y5 * ( z6 - z1 - z47 ) + y4 * ( z1 - z3 - z75 ) + y3 * z47 + y1 * z54 ) / 12.0; double x24 = x2 - x4; double x52 = x5 - x2; double x45 = x4 - x5; gradop[1][2] = ( z2 * ( x6 - x3 - x45 ) + z3 * x24 + z4 * ( x3 - x8 - x52 ) + z5 * ( x8 - x6 - x24 ) + z6 * x52 + z8 * x45 ) / 12.0; double x31 = x3 - x1; double x63 = x6 - x3; double x16 = x1 - x6; gradop[2][2] = ( z3 * ( x7 - x4 - x16 ) + z4 * x31 + z1 * ( x4 - x5 - x63 ) + z6 * ( x5 - x7 - x31 ) + z7 * x63 + z5 * x16 ) / 12.0; double x42 = x4 - x2; double x74 = x7 - x4; double x27 = x2 - x7; gradop[3][2] = ( z4 * ( x8 - x1 - x27 ) + z1 * x42 + z2 * ( x1 - x6 - x74 ) + z7 * ( x6 - x8 - x42 ) + z8 * x74 + z6 * x27 ) / 12.0; double x13 = x1 - x3; double x81 = x8 - x1; double x38 = x3 - x8; gradop[4][2] = ( z1 * ( x5 - x2 - x38 ) + z2 * x13 + z3 * ( x2 - x7 - x81 ) + z8 * ( x7 - x5 - x13 ) + z5 * x81 + z7 * x38 ) / 12.0; double x86 = x8 - x6; double x18 = x1 - x8; double x61 = x6 - x1; gradop[5][2] = ( z8 * ( x4 - x7 - x61 ) + z7 * x86 + z6 * ( x7 - x2 - x18 ) + z1 * ( x2 - x4 - x86 ) + z4 * x18 + z2 * x61 ) / 12.0; double x57 = x5 - x7; double x25 = x2 - x5; double x72 = x7 - x2; gradop[6][2] = ( z5 * ( x1 - x8 - x72 ) + z8 * x57 + z7 * ( x8 - x3 - x25 ) + z2 * ( x3 - x1 - x57 ) + z1 * x25 + z3 * x72 ) / 12.0; double x68 = x6 - x8; double x36 = x3 - x6; double x83 = x8 - x3; gradop[7][2] = ( z6 * ( x2 - x5 - x83 ) + z5 * x68 + z8 * ( x5 - x4 - x36 ) + z3 * ( x4 - x2 - x68 ) + z2 * x36 + z4 * x83 ) / 12.0; double x75 = x7 - x5; double x47 = x4 - x7; double x54 = x5 - x4; gradop[8][2] = ( z7 * ( x3 - x6 - x54 ) + z6 * x75 + z5 * ( x6 - x1 - x47 ) + z4 * ( x1 - x3 - x75 ) + z3 * x47 + z1 * x54 ) / 12.0; double y24 = y2 - y4; double y52 = y5 - y2; double y45 = y4 - y5; gradop[1][3] = ( x2 * ( y6 - y3 - y45 ) + x3 * y24 + x4 * ( y3 - y8 - y52 ) + x5 * ( y8 - y6 - y24 ) + x6 * y52 + x8 * y45 ) / 12.0; double y31 = y3 - y1; double y63 = y6 - y3; double y16 = y1 - y6; gradop[2][3] = ( x3 * ( y7 - y4 - y16 ) + x4 * y31 + x1 * ( y4 - y5 - y63 ) + x6 * ( y5 - y7 - y31 ) + x7 * y63 + x5 * y16 ) / 12.0; double y42 = y4 - y2; double y74 = y7 - y4; double y27 = y2 - y7; gradop[3][3] = ( x4 * ( y8 - y1 - y27 ) + x1 * y42 + x2 * ( y1 - y6 - y74 ) + x7 * ( y6 - y8 - y42 ) + x8 * y74 + x6 * y27 ) / 12.0; double y13 = y1 - y3; double y81 = y8 - y1; double y38 = y3 - y8; gradop[4][3] = ( x1 * ( y5 - y2 - y38 ) + x2 * y13 + x3 * ( y2 - y7 - y81 ) + x8 * ( y7 - y5 - y13 ) + x5 * y81 + x7 * y38 ) / 12.0; double y86 = y8 - y6; double y18 = y1 - y8; double y61 = y6 - y1; gradop[5][3] = ( x8 * ( y4 - y7 - y61 ) + x7 * y86 + x6 * ( y7 - y2 - y18 ) + x1 * ( y2 - y4 - y86 ) + x4 * y18 + x2 * y61 ) / 12.0; double y57 = y5 - y7; double y25 = y2 - y5; double y72 = y7 - y2; gradop[6][3] = ( x5 * ( y1 - y8 - y72 ) + x8 * y57 + x7 * ( y8 - y3 - y25 ) + x2 * ( y3 - y1 - y57 ) + x1 * y25 + x3 * y72 ) / 12.0; double y68 = y6 - y8; double y36 = y3 - y6; double y83 = y8 - y3; gradop[7][3] = ( x6 * ( y2 - y5 - y83 ) + x5 * y68 + x8 * ( y5 - y4 - y36 ) + x3 * ( y4 - y2 - y68 ) + x2 * y36 + x4 * y83 ) / 12.0; double y75 = y7 - y5; double y47 = y4 - y7; double y54 = y5 - y4; gradop[8][3] = ( x7 * ( y3 - y6 - y54 ) + x6 * y75 + x5 * ( y6 - y1 - y47 ) + x4 * ( y1 - y3 - y75 ) + x3 * y47 + x1 * y54 ) / 12.0; // calculate element volume and characteristic element aspect ratio // (used in time step and hourglass control) - double volume = coordinates[0][0] * gradop[1][1] + coordinates[1][0] * gradop[2][1] + coordinates[2][0] * gradop[3][1] + coordinates[3][0] * gradop[4][1] + coordinates[4][0] * gradop[5][1] + coordinates[5][0] * gradop[6][1] + coordinates[6][0] * gradop[7][1] + coordinates[7][0] * gradop[8][1]; double aspect = .5 * SQR( volume ) / ( SQR( gradop[1][1] ) + SQR( gradop[2][1] ) + SQR( gradop[3][1] ) + SQR( gradop[4][1] ) + SQR( gradop[5][1] ) + SQR( gradop[6][1] ) + SQR( gradop[7][1] ) + SQR( gradop[8][1] ) + SQR( gradop[1][2] ) + SQR( gradop[2][2] ) + SQR( gradop[3][2] ) + SQR( gradop[4][2] ) + SQR( gradop[5][2] ) + SQR( gradop[6][2] ) + SQR( gradop[7][2] ) + SQR( gradop[8][2] ) + SQR( gradop[1][3] ) + SQR( gradop[2][3] ) + SQR( gradop[3][3] ) + SQR( gradop[4][3] ) + SQR( gradop[5][3] ) + SQR( gradop[6][3] ) + SQR( gradop[7][3] ) + SQR( gradop[8][3] ) ); return (double)sqrt( aspect ); }
C_FUNC_DEF double v_hex_distortion | ( | int | num_nodes, |
double | coordinates[][3] | ||
) |
Calculates hex distortion metric.
distortion of a hex
Definition at line 2228 of file V_HexMetric.cpp.
References GaussIntegration::calculate_derivative_at_nodes_3d(), GaussIntegration::calculate_shape_function_3d_hex(), GaussIntegration::get_shape_func(), GaussIntegration::initialize(), maxNumberNodes, maxTotalNumberGaussPoints, VerdictVector::set(), and VERDICT_DBL_MAX.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ // use 2x2 gauss points for linear hex and 3x3 for 2nd order hex int number_of_gauss_points = 0; if( num_nodes == 8 ) // 2x2 quadrature rule number_of_gauss_points = 2; else if( num_nodes == 20 ) // 3x3 quadrature rule number_of_gauss_points = 3; int number_dimension = 3; int total_number_of_gauss_points = number_of_gauss_points * number_of_gauss_points * number_of_gauss_points; double distortion = VERDICT_DBL_MAX; // maxTotalNumberGaussPoints =27, maxNumberNodes = 20 // they are defined in GaussIntegration.hpp // This is used to make these arrays static. // I tried dynamically allocated arrays but the new and delete // was very expensive double shape_function[maxTotalNumberGaussPoints][maxNumberNodes]; double dndy1[maxTotalNumberGaussPoints][maxNumberNodes]; double dndy2[maxTotalNumberGaussPoints][maxNumberNodes]; double dndy3[maxTotalNumberGaussPoints][maxNumberNodes]; double weight[maxTotalNumberGaussPoints]; // create an object of GaussIntegration GaussIntegration::initialize( number_of_gauss_points, num_nodes, number_dimension ); GaussIntegration::calculate_shape_function_3d_hex(); GaussIntegration::get_shape_func( shape_function[0], dndy1[0], dndy2[0], dndy3[0], weight ); VerdictVector xxi, xet, xze, xin; double jacobian, minimum_jacobian; double element_volume = 0.0; minimum_jacobian = VERDICT_DBL_MAX; // calculate element volume int ife, ja; for( ife = 0; ife < total_number_of_gauss_points; ife++ ) { xxi.set( 0.0, 0.0, 0.0 ); xet.set( 0.0, 0.0, 0.0 ); xze.set( 0.0, 0.0, 0.0 ); for( ja = 0; ja < num_nodes; ja++ ) { xin.set( coordinates[ja][0], coordinates[ja][1], coordinates[ja][2] ); xxi += dndy1[ife][ja] * xin; xet += dndy2[ife][ja] * xin; xze += dndy3[ife][ja] * xin; } jacobian = xxi % ( xet * xze ); if( minimum_jacobian > jacobian ) minimum_jacobian = jacobian; element_volume += weight[ife] * jacobian; } // loop through all nodes double dndy1_at_node[maxNumberNodes][maxNumberNodes]; double dndy2_at_node[maxNumberNodes][maxNumberNodes]; double dndy3_at_node[maxNumberNodes][maxNumberNodes]; GaussIntegration::calculate_derivative_at_nodes_3d( dndy1_at_node, dndy2_at_node, dndy3_at_node ); int node_id; for( node_id = 0; node_id < num_nodes; node_id++ ) { xxi.set( 0.0, 0.0, 0.0 ); xet.set( 0.0, 0.0, 0.0 ); xze.set( 0.0, 0.0, 0.0 ); for( ja = 0; ja < num_nodes; ja++ ) { xin.set( coordinates[ja][0], coordinates[ja][1], coordinates[ja][2] ); xxi += dndy1_at_node[node_id][ja] * xin; xet += dndy2_at_node[node_id][ja] * xin; xze += dndy3_at_node[node_id][ja] * xin; } jacobian = xxi % ( xet * xze ); if( minimum_jacobian > jacobian ) minimum_jacobian = jacobian; } distortion = minimum_jacobian / element_volume * 8.; return (double)distortion; }
C_FUNC_DEF double v_hex_edge_ratio | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex edge ratio metric.
the edge ratio of a hex
NB (P. Pebay 01/23/07): Hmax / Hmin where Hmax and Hmin are respectively the maximum and the minimum edge lengths
Definition at line 529 of file V_HexMetric.cpp.
References VerdictVector::length_squared(), make_hex_edges(), VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ VerdictVector edges[12]; make_hex_edges( coordinates, edges ); double a2 = edges[0].length_squared(); double b2 = edges[1].length_squared(); double c2 = edges[2].length_squared(); double d2 = edges[3].length_squared(); double e2 = edges[4].length_squared(); double f2 = edges[5].length_squared(); double g2 = edges[6].length_squared(); double h2 = edges[7].length_squared(); double i2 = edges[8].length_squared(); double j2 = edges[9].length_squared(); double k2 = edges[10].length_squared(); double l2 = edges[11].length_squared(); double mab, mcd, mef, Mab, Mcd, Mef; double mgh, mij, mkl, Mgh, Mij, Mkl; if( a2 < b2 ) { mab = a2; Mab = b2; } else // b2 <= a2 { mab = b2; Mab = a2; } if( c2 < d2 ) { mcd = c2; Mcd = d2; } else // d2 <= c2 { mcd = d2; Mcd = c2; } if( e2 < f2 ) { mef = e2; Mef = f2; } else // f2 <= e2 { mef = f2; Mef = e2; } if( g2 < h2 ) { mgh = g2; Mgh = h2; } else // h2 <= g2 { mgh = h2; Mgh = g2; } if( i2 < j2 ) { mij = i2; Mij = j2; } else // j2 <= i2 { mij = j2; Mij = i2; } if( k2 < l2 ) { mkl = k2; Mkl = l2; } else // l2 <= k2 { mkl = l2; Mkl = k2; } double m2; m2 = mab < mcd ? mab : mcd; m2 = m2 < mef ? m2 : mef; m2 = m2 < mgh ? m2 : mgh; m2 = m2 < mij ? m2 : mij; m2 = m2 < mkl ? m2 : mkl; if( m2 < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; double M2; M2 = Mab > Mcd ? Mab : Mcd; M2 = M2 > Mef ? M2 : Mef; M2 = M2 > Mgh ? M2 : Mgh; M2 = M2 > Mij ? M2 : Mij; M2 = M2 > Mkl ? M2 : Mkl; m2 = m2 < mef ? m2 : mef; M2 = Mab > Mcd ? Mab : Mcd; M2 = M2 > Mef ? M2 : Mef; double edge_ratio = sqrt( M2 / m2 ); if( edge_ratio > 0 ) return (double)VERDICT_MIN( edge_ratio, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( edge_ratio, -VERDICT_DBL_MAX ); }
int v_hex_get_weight | ( | VerdictVector & | v1, |
VerdictVector & | v2, | ||
VerdictVector & | v3 | ||
) |
weights based on the average size of a hex
Definition at line 39 of file V_HexMetric.cpp.
References VerdictVector::set(), and verdict_hex_size.
Referenced by v_hex_quality(), and v_hex_relative_size_squared().
{ if( verdict_hex_size == 0 ) return 0; v1.set( 1, 0, 0 ); v2.set( 0, 1, 0 ); v3.set( 0, 0, 1 ); double scale = pow( verdict_hex_size / ( v1 % ( v2 * v3 ) ), 0.33333333333 ); v1 *= scale; v2 *= scale; v3 *= scale; return 1; }
C_FUNC_DEF double v_hex_jacobian | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex jacobian metric.
jacobian of a hex
Minimum pointwise volume of local map at 8 corners & center of hex
Definition at line 1382 of file V_HexMetric.cpp.
References calc_hex_efg(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); double jacobian = VERDICT_DBL_MAX; double current_jacobian; VerdictVector xxi, xet, xze; xxi = calc_hex_efg( 1, node_pos ); xet = calc_hex_efg( 2, node_pos ); xze = calc_hex_efg( 3, node_pos ); current_jacobian = xxi % ( xet * xze ) / 64.0; if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } // J(0,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; current_jacobian = xxi % ( xet * xze ); if( current_jacobian < jacobian ) { jacobian = current_jacobian; } if( jacobian > 0 ) return (double)VERDICT_MIN( jacobian, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( jacobian, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_max_aspect_frobenius | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex condition metric.
maximum Frobenius condition number of a hex
Maximum Frobenius condition number of the Jacobian matrix at 8 corners NB (P. Pebay 01/25/07): this metric is calculated by taking the maximum of the 8 Frobenius aspects at each corner of the hex, when the reference corner is right isosceles.
Definition at line 1243 of file V_HexMetric.cpp.
References calc_hex_efg(), condition_comp(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_condition().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); double condition = 0.0, current_condition; VerdictVector xxi, xet, xze; xxi = calc_hex_efg( 1, node_pos ); xet = calc_hex_efg( 2, node_pos ); xze = calc_hex_efg( 3, node_pos ); current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } // J(1,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } condition /= 3.0; if( condition > 0 ) return (double)VERDICT_MIN( condition, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( condition, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_max_edge_ratio | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex maximum of edge ratio.
max edge ratio of a hex
Maximum edge length ratio at hex center
Definition at line 643 of file V_HexMetric.cpp.
References calc_hex_efg(), VerdictVector::length(), make_hex_nodes, safe_ratio(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ double aspect; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); double aspect_12, aspect_13, aspect_23; VerdictVector efg1 = calc_hex_efg( 1, node_pos ); VerdictVector efg2 = calc_hex_efg( 2, node_pos ); VerdictVector efg3 = calc_hex_efg( 3, node_pos ); double mag_efg1 = efg1.length(); double mag_efg2 = efg2.length(); double mag_efg3 = efg3.length(); aspect_12 = safe_ratio( VERDICT_MAX( mag_efg1, mag_efg2 ), VERDICT_MIN( mag_efg1, mag_efg2 ) ); aspect_13 = safe_ratio( VERDICT_MAX( mag_efg1, mag_efg3 ), VERDICT_MIN( mag_efg1, mag_efg3 ) ); aspect_23 = safe_ratio( VERDICT_MAX( mag_efg2, mag_efg3 ), VERDICT_MIN( mag_efg2, mag_efg3 ) ); aspect = VERDICT_MAX( aspect_12, VERDICT_MAX( aspect_13, aspect_23 ) ); if( aspect > 0 ) return (double)VERDICT_MIN( aspect, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( aspect, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_med_aspect_frobenius | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex condition metric.
the average Frobenius aspect of a hex
NB (P. Pebay 01/20/07): this metric is calculated by averaging the 8 Frobenius aspects at each corner of the hex, when the reference corner is right isosceles.
Definition at line 1164 of file V_HexMetric.cpp.
References condition_comp(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); double med_aspect_frobenius = 0.; VerdictVector xxi, xet, xze; // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); // J(1,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; med_aspect_frobenius += condition_comp( xxi, xet, xze ); med_aspect_frobenius /= 24.; if( med_aspect_frobenius > 0 ) return (double)VERDICT_MIN( med_aspect_frobenius, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( med_aspect_frobenius, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_oddy | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex oddy metric.
oddy of a hex
General distortion measure based on left Cauchy-Green Tensor
Definition at line 1014 of file V_HexMetric.cpp.
References calc_hex_efg(), make_hex_nodes, oddy_comp(), VerdictVector::set(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ double oddy = 0.0, current_oddy; VerdictVector xxi, xet, xze; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); xxi = calc_hex_efg( 1, node_pos ); xet = calc_hex_efg( 2, node_pos ); xze = calc_hex_efg( 3, node_pos ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); xet.set( coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1], coordinates[3][2] - coordinates[0][2] ); xze.set( coordinates[4][0] - coordinates[0][0], coordinates[4][1] - coordinates[0][1], coordinates[4][2] - coordinates[0][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); xet.set( coordinates[0][0] - coordinates[1][0], coordinates[0][1] - coordinates[1][1], coordinates[0][2] - coordinates[1][2] ); xze.set( coordinates[5][0] - coordinates[1][0], coordinates[5][1] - coordinates[1][1], coordinates[5][2] - coordinates[1][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1], coordinates[3][2] - coordinates[2][2] ); xet.set( coordinates[1][0] - coordinates[2][0], coordinates[1][1] - coordinates[2][1], coordinates[1][2] - coordinates[2][2] ); xze.set( coordinates[6][0] - coordinates[2][0], coordinates[6][1] - coordinates[2][1], coordinates[6][2] - coordinates[2][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[0][0] - coordinates[3][0], coordinates[0][1] - coordinates[3][1], coordinates[0][2] - coordinates[3][2] ); xet.set( coordinates[2][0] - coordinates[3][0], coordinates[2][1] - coordinates[3][1], coordinates[2][2] - coordinates[3][2] ); xze.set( coordinates[7][0] - coordinates[3][0], coordinates[7][1] - coordinates[3][1], coordinates[7][2] - coordinates[3][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[7][0] - coordinates[4][0], coordinates[7][1] - coordinates[4][1], coordinates[7][2] - coordinates[4][2] ); xet.set( coordinates[5][0] - coordinates[4][0], coordinates[5][1] - coordinates[4][1], coordinates[5][2] - coordinates[4][2] ); xze.set( coordinates[0][0] - coordinates[4][0], coordinates[0][1] - coordinates[4][1], coordinates[0][2] - coordinates[4][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[4][0] - coordinates[5][0], coordinates[4][1] - coordinates[5][1], coordinates[4][2] - coordinates[5][2] ); xet.set( coordinates[6][0] - coordinates[5][0], coordinates[6][1] - coordinates[5][1], coordinates[6][2] - coordinates[5][2] ); xze.set( coordinates[1][0] - coordinates[5][0], coordinates[1][1] - coordinates[5][1], coordinates[1][2] - coordinates[5][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[5][0] - coordinates[6][0], coordinates[5][1] - coordinates[6][1], coordinates[5][2] - coordinates[6][2] ); xet.set( coordinates[7][0] - coordinates[6][0], coordinates[7][1] - coordinates[6][1], coordinates[7][2] - coordinates[6][2] ); xze.set( coordinates[2][0] - coordinates[6][0], coordinates[2][1] - coordinates[6][1], coordinates[2][2] - coordinates[6][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } xxi.set( coordinates[6][0] - coordinates[7][0], coordinates[6][1] - coordinates[7][1], coordinates[6][2] - coordinates[7][2] ); xet.set( coordinates[4][0] - coordinates[7][0], coordinates[4][1] - coordinates[7][1], coordinates[4][2] - coordinates[7][2] ); xze.set( coordinates[3][0] - coordinates[7][0], coordinates[3][1] - coordinates[7][1], coordinates[3][2] - coordinates[7][2] ); current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } if( oddy > 0 ) return (double)VERDICT_MIN( oddy, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( oddy, -VERDICT_DBL_MAX ); }
C_FUNC_DEF void v_hex_quality | ( | int | num_nodes, |
double | coordinates[][3], | ||
unsigned int | metrics_request_flag, | ||
HexMetricVals * | metric_vals | ||
) |
Calculates quality metrics for hexahedral elements.
multiple quality metrics of a hex
Definition at line 2651 of file V_HexMetric.cpp.
References calc_hex_efg(), HexMetricVals::condition, condition_comp(), diag_length(), HexMetricVals::diagonal, HexMetricVals::dimension, HexMetricVals::distortion, HexMetricVals::edge_ratio, HexMetricVals::jacobian, VerdictVector::length(), length_squared(), VerdictVector::length_squared(), make_edge_length_squares, make_hex_edges(), make_hex_nodes, HexMetricVals::max_edge_ratio, HexMetricVals::med_aspect_frobenius, VerdictVector::normalize(), HexMetricVals::oddy, oddy_comp(), HexMetricVals::relative_size_squared, safe_ratio(), HexMetricVals::scaled_jacobian, HexMetricVals::shape, HexMetricVals::shape_and_size, HexMetricVals::shear, HexMetricVals::shear_and_size, HexMetricVals::skew, HexMetricVals::stretch, HexMetricVals::taper, V_HEX_CONDITION, V_HEX_DIAGONAL, v_hex_diagonal(), V_HEX_DIMENSION, v_hex_dimension(), V_HEX_DISTORTION, v_hex_distortion(), V_HEX_EDGE_RATIO, v_hex_edge_ratio(), v_hex_get_weight(), V_HEX_JACOBIAN, V_HEX_MAX_EDGE_RATIO, V_HEX_MED_ASPECT_FROBENIUS, v_hex_med_aspect_frobenius(), V_HEX_ODDY, V_HEX_RELATIVE_SIZE_SQUARED, V_HEX_SCALED_JACOBIAN, V_HEX_SHAPE, V_HEX_SHAPE_AND_SIZE, V_HEX_SHEAR, V_HEX_SHEAR_AND_SIZE, V_HEX_SKEW, V_HEX_STRETCH, V_HEX_TAPER, V_HEX_VOLUME, v_hex_volume(), VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_FALSE, VERDICT_MAX, VERDICT_MIN, VERDICT_TRUE, and HexMetricVals::volume.
Referenced by moab::VerdictWrapper::all_quality_measures().
{ memset( metric_vals, 0, sizeof( HexMetricVals ) ); // max edge ratio, skew, taper, and volume if( metrics_request_flag & ( V_HEX_MAX_EDGE_RATIO | V_HEX_SKEW | V_HEX_TAPER ) ) { VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); VerdictVector efg1, efg2, efg3; efg1 = calc_hex_efg( 1, node_pos ); efg2 = calc_hex_efg( 2, node_pos ); efg3 = calc_hex_efg( 3, node_pos ); if( metrics_request_flag & V_HEX_MAX_EDGE_RATIO ) { double max_edge_ratio_12, max_edge_ratio_13, max_edge_ratio_23; double mag_efg1 = efg1.length(); double mag_efg2 = efg2.length(); double mag_efg3 = efg3.length(); max_edge_ratio_12 = safe_ratio( VERDICT_MAX( mag_efg1, mag_efg2 ), VERDICT_MIN( mag_efg1, mag_efg2 ) ); max_edge_ratio_13 = safe_ratio( VERDICT_MAX( mag_efg1, mag_efg3 ), VERDICT_MIN( mag_efg1, mag_efg3 ) ); max_edge_ratio_23 = safe_ratio( VERDICT_MAX( mag_efg2, mag_efg3 ), VERDICT_MIN( mag_efg2, mag_efg3 ) ); metric_vals->max_edge_ratio = (double)VERDICT_MAX( max_edge_ratio_12, VERDICT_MAX( max_edge_ratio_13, max_edge_ratio_23 ) ); } if( metrics_request_flag & V_HEX_SKEW ) { VerdictVector vec1 = efg1; VerdictVector vec2 = efg2; VerdictVector vec3 = efg3; if( vec1.normalize() <= VERDICT_DBL_MIN || vec2.normalize() <= VERDICT_DBL_MIN || vec3.normalize() <= VERDICT_DBL_MIN ) { metric_vals->skew = (double)VERDICT_DBL_MAX; } else { double skewx = fabs( vec1 % vec2 ); double skewy = fabs( vec1 % vec3 ); double skewz = fabs( vec2 % vec3 ); metric_vals->skew = (double)( VERDICT_MAX( skewx, VERDICT_MAX( skewy, skewz ) ) ); } } if( metrics_request_flag & V_HEX_TAPER ) { VerdictVector efg12 = calc_hex_efg( 12, node_pos ); VerdictVector efg13 = calc_hex_efg( 13, node_pos ); VerdictVector efg23 = calc_hex_efg( 23, node_pos ); double taperx = fabs( safe_ratio( efg12.length(), VERDICT_MIN( efg1.length(), efg2.length() ) ) ); double tapery = fabs( safe_ratio( efg13.length(), VERDICT_MIN( efg1.length(), efg3.length() ) ) ); double taperz = fabs( safe_ratio( efg23.length(), VERDICT_MIN( efg2.length(), efg3.length() ) ) ); metric_vals->taper = (double)VERDICT_MAX( taperx, VERDICT_MAX( tapery, taperz ) ); } } if( metrics_request_flag & V_HEX_VOLUME ) { metric_vals->volume = v_hex_volume( 8, coordinates ); } if( metrics_request_flag & ( V_HEX_JACOBIAN | V_HEX_SCALED_JACOBIAN | V_HEX_CONDITION | V_HEX_SHEAR | V_HEX_SHAPE | V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE | V_HEX_STRETCH ) ) { static const double two_thirds = 2.0 / 3.0; VerdictVector edges[12]; // the length squares double length_squared[12]; // make vectors from coordinates make_hex_edges( coordinates, edges ); // calculate the length squares if we need to if( metrics_request_flag & ( V_HEX_JACOBIAN | V_HEX_SHEAR | V_HEX_SCALED_JACOBIAN | V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE | V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHEAR_AND_SIZE | V_HEX_STRETCH ) ) make_edge_length_squares( edges, length_squared ); double jacobian = VERDICT_DBL_MAX, scaled_jacobian = VERDICT_DBL_MAX, condition = 0.0, shear = 1.0, shape = 1.0, oddy = 0.0; double current_jacobian, current_scaled_jacobian, current_condition, current_shape, detw = 0, det_sum = 0, current_oddy; VerdictBoolean rel_size_error = VERDICT_FALSE; VerdictVector xxi, xet, xze; // get weights if we need based on average size of a hex if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { v_hex_get_weight( xxi, xet, xze ); detw = xxi % ( xet * xze ); if( detw < VERDICT_DBL_MIN ) rel_size_error = VERDICT_TRUE; } xxi = edges[0] - edges[2] + edges[4] - edges[6]; xet = edges[1] - edges[3] + edges[5] - edges[7]; xze = edges[8] + edges[9] + edges[10] + edges[11]; current_jacobian = xxi % ( xet * xze ) / 64.0; if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { current_jacobian *= 64.0; current_scaled_jacobian = current_jacobian / sqrt( xxi.length_squared() * xet.length_squared() * xze.length_squared() ); if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( xxi, xet, xze ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( xxi, xet, xze ); if( current_oddy > oddy ) { oddy = current_oddy; } } // J(0,0,0) current_jacobian = edges[0] % ( -edges[3] * edges[8] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[0] <= VERDICT_DBL_MIN || length_squared[3] <= VERDICT_DBL_MIN || length_squared[8] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[0] * length_squared[3] * length_squared[8] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( edges[0], -edges[3], edges[8] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( edges[0], -edges[3], edges[8] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[0] + length_squared[3] + length_squared[8] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(1,0,0) current_jacobian = edges[1] % ( -edges[0] * edges[9] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[1] <= VERDICT_DBL_MIN || length_squared[0] <= VERDICT_DBL_MIN || length_squared[9] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[1] * length_squared[0] * length_squared[9] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( edges[1], -edges[0], edges[9] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( edges[1], -edges[0], edges[9] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[1] + length_squared[0] + length_squared[9] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(1,1,0) current_jacobian = edges[2] % ( -edges[1] * edges[10] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[2] <= VERDICT_DBL_MIN || length_squared[1] <= VERDICT_DBL_MIN || length_squared[10] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[2] * length_squared[1] * length_squared[10] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( edges[2], -edges[1], edges[10] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( edges[2], -edges[1], edges[10] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[2] + length_squared[1] + length_squared[10] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(0,1,0) current_jacobian = edges[3] % ( -edges[2] * edges[11] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[3] <= VERDICT_DBL_MIN || length_squared[2] <= VERDICT_DBL_MIN || length_squared[11] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[3] * length_squared[2] * length_squared[11] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( edges[3], -edges[2], edges[11] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( edges[3], -edges[2], edges[11] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[3] + length_squared[2] + length_squared[11] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(0,0,1) current_jacobian = edges[4] % ( -edges[8] * -edges[7] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[4] <= VERDICT_DBL_MIN || length_squared[8] <= VERDICT_DBL_MIN || length_squared[7] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[4] * length_squared[8] * length_squared[7] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( edges[4], -edges[8], -edges[7] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( edges[4], -edges[8], -edges[7] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[4] + length_squared[8] + length_squared[7] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(1,0,1) current_jacobian = -edges[4] % ( edges[5] * -edges[9] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[4] <= VERDICT_DBL_MIN || length_squared[5] <= VERDICT_DBL_MIN || length_squared[9] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[4] * length_squared[5] * length_squared[9] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( -edges[4], edges[5], -edges[9] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( -edges[4], edges[5], -edges[9] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[4] + length_squared[5] + length_squared[9] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(1,1,1) current_jacobian = -edges[5] % ( edges[6] * -edges[10] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[5] <= VERDICT_DBL_MIN || length_squared[6] <= VERDICT_DBL_MIN || length_squared[10] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[5] * length_squared[6] * length_squared[10] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( -edges[5], edges[6], -edges[10] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( -edges[5], edges[6], -edges[10] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[5] + length_squared[6] + length_squared[10] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } // J(0,1,1) current_jacobian = -edges[6] % ( edges[7] * -edges[11] ); if( current_jacobian < jacobian ) jacobian = current_jacobian; if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { det_sum += current_jacobian; } if( metrics_request_flag & ( V_HEX_SCALED_JACOBIAN | V_HEX_SHEAR | V_HEX_SHEAR_AND_SIZE ) ) { if( length_squared[6] <= VERDICT_DBL_MIN || length_squared[7] <= VERDICT_DBL_MIN || length_squared[11] <= VERDICT_DBL_MIN ) { current_scaled_jacobian = VERDICT_DBL_MAX; } else { current_scaled_jacobian = current_jacobian / sqrt( length_squared[6] * length_squared[7] * length_squared[11] ); } if( current_scaled_jacobian < scaled_jacobian ) shear = scaled_jacobian = current_scaled_jacobian; } if( metrics_request_flag & V_HEX_CONDITION ) { current_condition = condition_comp( -edges[6], edges[7], -edges[11] ); if( current_condition > condition ) { condition = current_condition; } } if( metrics_request_flag & V_HEX_ODDY ) { current_oddy = oddy_comp( -edges[6], edges[7], -edges[11] ); if( current_oddy > oddy ) { oddy = current_oddy; } } if( metrics_request_flag & ( V_HEX_SHAPE | V_HEX_SHAPE_AND_SIZE ) ) { if( current_jacobian > VERDICT_DBL_MIN ) current_shape = 3 * pow( current_jacobian, two_thirds ) / ( length_squared[6] + length_squared[7] + length_squared[11] ); else current_shape = 0; if( current_shape < shape ) { shape = current_shape; } } if( metrics_request_flag & ( V_HEX_RELATIVE_SIZE_SQUARED | V_HEX_SHAPE_AND_SIZE | V_HEX_SHEAR_AND_SIZE ) ) { if( det_sum > VERDICT_DBL_MIN && rel_size_error != VERDICT_TRUE ) { double tau = det_sum / ( 8 * detw ); metric_vals->relative_size_squared = (double)VERDICT_MIN( tau * tau, 1.0 / tau / tau ); } else metric_vals->relative_size_squared = 0.0; } // set values from above calculations if( metrics_request_flag & V_HEX_JACOBIAN ) metric_vals->jacobian = (double)jacobian; if( metrics_request_flag & V_HEX_SCALED_JACOBIAN ) metric_vals->scaled_jacobian = (double)scaled_jacobian; if( metrics_request_flag & V_HEX_CONDITION ) metric_vals->condition = (double)( condition / 3.0 ); if( metrics_request_flag & V_HEX_SHEAR ) { if( shear < VERDICT_DBL_MIN ) // shear has range 0 to +1 shear = 0; metric_vals->shear = (double)shear; } if( metrics_request_flag & V_HEX_SHAPE ) metric_vals->shape = (double)shape; if( metrics_request_flag & V_HEX_SHAPE_AND_SIZE ) metric_vals->shape_and_size = (double)( shape * metric_vals->relative_size_squared ); if( metrics_request_flag & V_HEX_SHEAR_AND_SIZE ) metric_vals->shear_and_size = (double)( shear * metric_vals->relative_size_squared ); if( metrics_request_flag & V_HEX_ODDY ) metric_vals->oddy = (double)oddy; if( metrics_request_flag & V_HEX_STRETCH ) { static const double HEX_STRETCH_SCALE_FACTOR = sqrt( 3.0 ); double min_edge = length_squared[0]; for( int j = 1; j < 12; j++ ) min_edge = VERDICT_MIN( min_edge, length_squared[j] ); double max_diag = diag_length( 1, coordinates ); metric_vals->stretch = (double)( HEX_STRETCH_SCALE_FACTOR * ( safe_ratio( sqrt( min_edge ), max_diag ) ) ); } } if( metrics_request_flag & V_HEX_DIAGONAL ) metric_vals->diagonal = v_hex_diagonal( num_nodes, coordinates ); if( metrics_request_flag & V_HEX_DIMENSION ) metric_vals->dimension = v_hex_dimension( num_nodes, coordinates ); if( metrics_request_flag & V_HEX_DISTORTION ) metric_vals->distortion = v_hex_distortion( num_nodes, coordinates ); // take care of any overflow problems // max_edge_ratio if( metric_vals->max_edge_ratio > 0 ) metric_vals->max_edge_ratio = (double)VERDICT_MIN( metric_vals->max_edge_ratio, VERDICT_DBL_MAX ); else metric_vals->max_edge_ratio = (double)VERDICT_MAX( metric_vals->max_edge_ratio, -VERDICT_DBL_MAX ); // skew if( metric_vals->skew > 0 ) metric_vals->skew = (double)VERDICT_MIN( metric_vals->skew, VERDICT_DBL_MAX ); else metric_vals->skew = (double)VERDICT_MAX( metric_vals->skew, -VERDICT_DBL_MAX ); // taper if( metric_vals->taper > 0 ) metric_vals->taper = (double)VERDICT_MIN( metric_vals->taper, VERDICT_DBL_MAX ); else metric_vals->taper = (double)VERDICT_MAX( metric_vals->taper, -VERDICT_DBL_MAX ); // volume if( metric_vals->volume > 0 ) metric_vals->volume = (double)VERDICT_MIN( metric_vals->volume, VERDICT_DBL_MAX ); else metric_vals->volume = (double)VERDICT_MAX( metric_vals->volume, -VERDICT_DBL_MAX ); // stretch if( metric_vals->stretch > 0 ) metric_vals->stretch = (double)VERDICT_MIN( metric_vals->stretch, VERDICT_DBL_MAX ); else metric_vals->stretch = (double)VERDICT_MAX( metric_vals->stretch, -VERDICT_DBL_MAX ); // diagonal if( metric_vals->diagonal > 0 ) metric_vals->diagonal = (double)VERDICT_MIN( metric_vals->diagonal, VERDICT_DBL_MAX ); else metric_vals->diagonal = (double)VERDICT_MAX( metric_vals->diagonal, -VERDICT_DBL_MAX ); // dimension if( metric_vals->dimension > 0 ) metric_vals->dimension = (double)VERDICT_MIN( metric_vals->dimension, VERDICT_DBL_MAX ); else metric_vals->dimension = (double)VERDICT_MAX( metric_vals->dimension, -VERDICT_DBL_MAX ); // oddy if( metric_vals->oddy > 0 ) metric_vals->oddy = (double)VERDICT_MIN( metric_vals->oddy, VERDICT_DBL_MAX ); else metric_vals->oddy = (double)VERDICT_MAX( metric_vals->oddy, -VERDICT_DBL_MAX ); // condition if( metric_vals->condition > 0 ) metric_vals->condition = (double)VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX ); else metric_vals->condition = (double)VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX ); // jacobian if( metric_vals->jacobian > 0 ) metric_vals->jacobian = (double)VERDICT_MIN( metric_vals->jacobian, VERDICT_DBL_MAX ); else metric_vals->jacobian = (double)VERDICT_MAX( metric_vals->jacobian, -VERDICT_DBL_MAX ); // scaled_jacobian if( metric_vals->scaled_jacobian > 0 ) metric_vals->scaled_jacobian = (double)VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX ); else metric_vals->scaled_jacobian = (double)VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX ); // shear if( metric_vals->shear > 0 ) metric_vals->shear = (double)VERDICT_MIN( metric_vals->shear, VERDICT_DBL_MAX ); else metric_vals->shear = (double)VERDICT_MAX( metric_vals->shear, -VERDICT_DBL_MAX ); // shape if( metric_vals->shape > 0 ) metric_vals->shape = (double)VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX ); else metric_vals->shape = (double)VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX ); // relative_size_squared if( metric_vals->relative_size_squared > 0 ) metric_vals->relative_size_squared = (double)VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX ); else metric_vals->relative_size_squared = (double)VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX ); // shape_and_size if( metric_vals->shape_and_size > 0 ) metric_vals->shape_and_size = (double)VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX ); else metric_vals->shape_and_size = (double)VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX ); // shear_and_size if( metric_vals->shear_and_size > 0 ) metric_vals->shear_and_size = (double)VERDICT_MIN( metric_vals->shear_and_size, VERDICT_DBL_MAX ); else metric_vals->shear_and_size = (double)VERDICT_MAX( metric_vals->shear_and_size, -VERDICT_DBL_MAX ); // distortion if( metric_vals->distortion > 0 ) metric_vals->distortion = (double)VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX ); else metric_vals->distortion = (double)VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX ); if( metrics_request_flag & V_HEX_MED_ASPECT_FROBENIUS ) metric_vals->med_aspect_frobenius = v_hex_med_aspect_frobenius( 8, coordinates ); if( metrics_request_flag & V_HEX_EDGE_RATIO ) metric_vals->edge_ratio = v_hex_edge_ratio( 8, coordinates ); }
C_FUNC_DEF double v_hex_relative_size_squared | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex relative size metric.
relative size of a hex
Min( J, 1/J ), where J is determinant of weighted Jacobian matrix
Definition at line 2090 of file V_HexMetric.cpp.
References make_hex_nodes, size, v_hex_get_weight(), VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), v_hex_shape_and_size(), and v_hex_shear_and_size().
{ double size = 0; double tau; VerdictVector xxi, xet, xze; double det, det_sum = 0; v_hex_get_weight( xxi, xet, xze ); // This is the average relative size double detw = xxi % ( xet * xze ); if( detw < VERDICT_DBL_MIN ) return 0; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; det = xxi % ( xet * xze ); det_sum += det; // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; det = xxi % ( xet * xze ); det_sum += det; // J(0,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; det = xxi % ( xet * xze ); det_sum += det; // J(1,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; det = xxi % ( xet * xze ); det_sum += det; // J(0,1,0): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; det = xxi % ( xet * xze ); det_sum += det; // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; det = xxi % ( xet * xze ); det_sum += det; // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; det = xxi % ( xet * xze ); det_sum += det; // J(1,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; det = xxi % ( xet * xze ); det_sum += det; if( det_sum > VERDICT_DBL_MIN ) { tau = det_sum / ( 8 * detw ); tau = VERDICT_MIN( tau, 1.0 / tau ); size = tau * tau; } if( size > 0 ) return (double)VERDICT_MIN( size, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( size, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_scaled_jacobian | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex scaled jacobian metric.
scaled jacobian of a hex
Minimum Jacobian divided by the lengths of the 3 edge vectors
Definition at line 1507 of file V_HexMetric.cpp.
References calc_hex_efg(), VerdictVector::length_squared(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ double jacobi, min_norm_jac = VERDICT_DBL_MAX; // double min_jacobi = VERDICT_DBL_MAX; double temp_norm_jac, lengths; double len1_sq, len2_sq, len3_sq; VerdictVector xxi, xet, xze; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); xxi = calc_hex_efg( 1, node_pos ); xet = calc_hex_efg( 2, node_pos ); xze = calc_hex_efg( 3, node_pos ); jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; else temp_norm_jac = jacobi; // J(0,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; jacobi = xxi % ( xet * xze ); // if( jacobi < min_jacobi ) { min_jacobi = jacobi; } len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; lengths = sqrt( len1_sq * len2_sq * len3_sq ); temp_norm_jac = jacobi / lengths; if( temp_norm_jac < min_norm_jac ) min_norm_jac = temp_norm_jac; // else // temp_norm_jac = jacobi; if( min_norm_jac > 0 ) return (double)VERDICT_MIN( min_norm_jac, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( min_norm_jac, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_shape | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex shape metric.
shape of a hex
3/Condition number of weighted Jacobian matrix
Definition at line 1931 of file V_HexMetric.cpp.
References make_hex_nodes, VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_shape_and_size().
{ double det, shape; double min_shape = 1.0; static const double two_thirds = 2.0 / 3.0; VerdictVector xxi, xet, xze; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } // J(1,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; det = xxi % ( xet * xze ); if( det > VERDICT_DBL_MIN ) shape = 3 * pow( det, two_thirds ) / ( xxi % xxi + xet % xet + xze % xze ); else return 0; if( shape < min_shape ) { min_shape = shape; } if( min_shape <= VERDICT_DBL_MIN ) min_shape = 0; if( min_shape > 0 ) return (double)VERDICT_MIN( min_shape, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( min_shape, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_shape_and_size | ( | int | num_nodes, |
double | coordinates[][3] | ||
) |
Calculates hex shape-size metric.
shape and size of a hex
Product of Shape and Relative Size
Definition at line 2198 of file V_HexMetric.cpp.
References size, v_hex_relative_size_squared(), v_hex_shape(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ double size = v_hex_relative_size_squared( num_nodes, coordinates ); double shape = v_hex_shape( num_nodes, coordinates ); double shape_size = size * shape; if( shape_size > 0 ) return (double)VERDICT_MIN( shape_size, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( shape_size, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_shear | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex shear metric.
shear of a hex
3/Condition number of Jacobian Skew matrix
Definition at line 1733 of file V_HexMetric.cpp.
References VerdictVector::length_squared(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_shear_and_size().
{ double shear; double min_shear = 1.0; VerdictVector xxi, xet, xze; double det, len1_sq, len2_sq, len3_sq, lengths; VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); // J(0,0,0): xxi = node_pos[1] - node_pos[0]; xet = node_pos[3] - node_pos[0]; xze = node_pos[4] - node_pos[0]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(1,0,0): xxi = node_pos[2] - node_pos[1]; xet = node_pos[0] - node_pos[1]; xze = node_pos[5] - node_pos[1]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(1,1,0): xxi = node_pos[3] - node_pos[2]; xet = node_pos[1] - node_pos[2]; xze = node_pos[6] - node_pos[2]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(0,1,0): xxi = node_pos[0] - node_pos[3]; xet = node_pos[2] - node_pos[3]; xze = node_pos[7] - node_pos[3]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(0,0,1): xxi = node_pos[7] - node_pos[4]; xet = node_pos[5] - node_pos[4]; xze = node_pos[0] - node_pos[4]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(1,0,1): xxi = node_pos[4] - node_pos[5]; xet = node_pos[6] - node_pos[5]; xze = node_pos[1] - node_pos[5]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(1,1,1): xxi = node_pos[5] - node_pos[6]; xet = node_pos[7] - node_pos[6]; xze = node_pos[2] - node_pos[6]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); // J(0,1,1): xxi = node_pos[6] - node_pos[7]; xet = node_pos[4] - node_pos[7]; xze = node_pos[3] - node_pos[7]; len1_sq = xxi.length_squared(); len2_sq = xet.length_squared(); len3_sq = xze.length_squared(); if( len1_sq <= VERDICT_DBL_MIN || len2_sq <= VERDICT_DBL_MIN || len3_sq <= VERDICT_DBL_MIN ) return 0; lengths = sqrt( len1_sq * len2_sq * len3_sq ); det = xxi % ( xet * xze ); if( det < VERDICT_DBL_MIN ) { return 0; } shear = det / lengths; min_shear = VERDICT_MIN( shear, min_shear ); if( min_shear <= VERDICT_DBL_MIN ) min_shear = 0; if( min_shear > 0 ) return (double)VERDICT_MIN( min_shear, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( min_shear, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_shear_and_size | ( | int | num_nodes, |
double | coordinates[][3] | ||
) |
Calculates hex shear-size metric.
shear and size of a hex
Product of Shear and Relative Size
Definition at line 2214 of file V_HexMetric.cpp.
References size, v_hex_relative_size_squared(), v_hex_shear(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ double size = v_hex_relative_size_squared( num_nodes, coordinates ); double shear = v_hex_shear( num_nodes, coordinates ); double shear_size = shear * size; if( shear_size > 0 ) return (double)VERDICT_MIN( shear_size, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( shear_size, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_skew | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex skew metric.
skew of a hex
Maximum ||cosA|| where A is the angle between edges at hex center.
Definition at line 674 of file V_HexMetric.cpp.
References calc_hex_efg(), make_hex_nodes, VerdictVector::normalize(), VERDICT_DBL_MAX, VERDICT_DBL_MIN, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); double skew_1, skew_2, skew_3; VerdictVector efg1 = calc_hex_efg( 1, node_pos ); VerdictVector efg2 = calc_hex_efg( 2, node_pos ); VerdictVector efg3 = calc_hex_efg( 3, node_pos ); if( efg1.normalize() <= VERDICT_DBL_MIN ) return VERDICT_DBL_MAX; if( efg2.normalize() <= VERDICT_DBL_MIN ) return VERDICT_DBL_MAX; if( efg3.normalize() <= VERDICT_DBL_MIN ) return VERDICT_DBL_MAX; skew_1 = fabs( efg1 % efg2 ); skew_2 = fabs( efg1 % efg3 ); skew_3 = fabs( efg2 % efg3 ); double skew = ( VERDICT_MAX( skew_1, VERDICT_MAX( skew_2, skew_3 ) ) ); if( skew > 0 ) return (double)VERDICT_MIN( skew, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( skew, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_stretch | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex stretch metric.
stretch of a hex
sqrt(3) * minimum edge length / maximum diagonal length
Definition at line 753 of file V_HexMetric.cpp.
References diag_length(), hex_edge_length(), safe_ratio(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ static const double HEX_STRETCH_SCALE_FACTOR = sqrt( 3.0 ); double min_edge = hex_edge_length( 0, coordinates ); double max_diag = diag_length( 1, coordinates ); double stretch = HEX_STRETCH_SCALE_FACTOR * safe_ratio( min_edge, max_diag ); if( stretch > 0 ) return (double)VERDICT_MIN( stretch, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( stretch, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_taper | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex taper metric.
taper of a hex
Maximum ratio of lengths derived from opposite edges.
Definition at line 704 of file V_HexMetric.cpp.
References calc_hex_efg(), VerdictVector::length(), make_hex_nodes, safe_ratio(), VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); VerdictVector efg1 = calc_hex_efg( 1, node_pos ); VerdictVector efg2 = calc_hex_efg( 2, node_pos ); VerdictVector efg3 = calc_hex_efg( 3, node_pos ); VerdictVector efg12 = calc_hex_efg( 12, node_pos ); VerdictVector efg13 = calc_hex_efg( 13, node_pos ); VerdictVector efg23 = calc_hex_efg( 23, node_pos ); double taper_1 = fabs( safe_ratio( efg12.length(), VERDICT_MIN( efg1.length(), efg2.length() ) ) ); double taper_2 = fabs( safe_ratio( efg13.length(), VERDICT_MIN( efg1.length(), efg3.length() ) ) ); double taper_3 = fabs( safe_ratio( efg23.length(), VERDICT_MIN( efg2.length(), efg3.length() ) ) ); double taper = (double)VERDICT_MAX( taper_1, VERDICT_MAX( taper_2, taper_3 ) ); if( taper > 0 ) return (double)VERDICT_MIN( taper, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( taper, -VERDICT_DBL_MAX ); }
C_FUNC_DEF double v_hex_volume | ( | int | , |
double | coordinates[][3] | ||
) |
Calculates hex volume.
volume of a hex
Jacobian at hex center
Definition at line 732 of file V_HexMetric.cpp.
References calc_hex_efg(), make_hex_nodes, VERDICT_DBL_MAX, VERDICT_MAX, and VERDICT_MIN.
Referenced by moab::VerdictWrapper::quality_measure(), and v_hex_quality().
{ VerdictVector node_pos[8]; make_hex_nodes( coordinates, node_pos ); VerdictVector efg1 = calc_hex_efg( 1, node_pos ); VerdictVector efg2 = calc_hex_efg( 2, node_pos ); VerdictVector efg3 = calc_hex_efg( 3, node_pos ); double volume; volume = (double)( efg1 % ( efg2 * efg3 ) ) / 64.0; if( volume > 0 ) return (double)VERDICT_MIN( volume, VERDICT_DBL_MAX ); return (double)VERDICT_MAX( volume, -VERDICT_DBL_MAX ); }
C_FUNC_DEF void v_set_hex_size | ( | double | size | ) |
returns the average volume of a hex
Sets average size (volume) of hex, needed for v_hex_relative_size(...)
Definition at line 57 of file V_HexMetric.cpp.
References size, and verdict_hex_size.
Referenced by moab::VerdictWrapper::set_size().
{ verdict_hex_size = size; }
double verdict_hex_size = 0 |
the average volume of a hex
Definition at line 36 of file V_HexMetric.cpp.
Referenced by v_hex_get_weight(), and v_set_hex_size().