MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 #include "moab/LocalDiscretization/LinearQuad.hpp" 00002 #include "moab/Matrix3.hpp" 00003 #include "moab/Forward.hpp" 00004 #include <cmath> 00005 #include <limits> 00006 00007 namespace moab 00008 { 00009 00010 const double LinearQuad::corner[4][2] = { { -1, -1 }, { 1, -1 }, { 1, 1 }, { -1, 1 } }; 00011 00012 /* For each point, its weight and location are stored as an array. 00013 Hence, the inner dimension is 2, the outer dimension is gauss_count. 00014 We use a one-point Gaussian quadrature, since it integrates linear functions exactly. 00015 */ 00016 const double LinearQuad::gauss[1][2] = { { 2.0, 0.0 } }; 00017 00018 ErrorCode LinearQuad::jacobianFcn( const double* params, 00019 const double* verts, 00020 const int /*nverts*/, 00021 const int /*ndim*/, 00022 double*, 00023 double* result ) 00024 { 00025 Matrix3* J = reinterpret_cast< Matrix3* >( result ); 00026 *J = Matrix3( 0.0 ); 00027 for( unsigned i = 0; i < 4; ++i ) 00028 { 00029 const double xi_p = 1 + params[0] * corner[i][0]; 00030 const double eta_p = 1 + params[1] * corner[i][1]; 00031 const double dNi_dxi = corner[i][0] * eta_p; 00032 const double dNi_deta = corner[i][1] * xi_p; 00033 ( *J )( 0, 0 ) += dNi_dxi * verts[i * 3 + 0]; 00034 ( *J )( 1, 0 ) += dNi_dxi * verts[i * 3 + 1]; 00035 ( *J )( 0, 1 ) += dNi_deta * verts[i * 3 + 0]; 00036 ( *J )( 1, 1 ) += dNi_deta * verts[i * 3 + 1]; 00037 } 00038 ( *J ) *= 0.25; 00039 ( *J )( 2, 2 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */ 00040 return MB_SUCCESS; 00041 } // LinearQuad::jacobian() 00042 00043 ErrorCode LinearQuad::evalFcn( const double* params, 00044 const double* field, 00045 const int /*ndim*/, 00046 const int num_tuples, 00047 double*, 00048 double* result ) 00049 { 00050 for( int i = 0; i < num_tuples; i++ ) 00051 result[i] = 0.0; 00052 for( unsigned i = 0; i < 4; ++i ) 00053 { 00054 const double N_i = ( 1 + params[0] * corner[i][0] ) * ( 1 + params[1] * corner[i][1] ); 00055 for( int j = 0; j < num_tuples; j++ ) 00056 result[j] += N_i * field[i * num_tuples + j]; 00057 } 00058 for( int i = 0; i < num_tuples; i++ ) 00059 result[i] *= 0.25; 00060 00061 return MB_SUCCESS; 00062 } 00063 00064 ErrorCode LinearQuad::integrateFcn( const double* field, 00065 const double* verts, 00066 const int nverts, 00067 const int ndim, 00068 const int num_tuples, 00069 double* work, 00070 double* result ) 00071 { 00072 double tmp_result[4]; 00073 ErrorCode rval = MB_SUCCESS; 00074 for( int i = 0; i < num_tuples; i++ ) 00075 result[i] = 0.0; 00076 CartVect x; 00077 Matrix3 J; 00078 for( unsigned int j1 = 0; j1 < LinearQuad::gauss_count; ++j1 ) 00079 { 00080 x[0] = LinearQuad::gauss[j1][1]; 00081 double w1 = LinearQuad::gauss[j1][0]; 00082 for( unsigned int j2 = 0; j2 < LinearQuad::gauss_count; ++j2 ) 00083 { 00084 x[1] = LinearQuad::gauss[j2][1]; 00085 double w2 = LinearQuad::gauss[j2][0]; 00086 rval = evalFcn( x.array(), field, ndim, num_tuples, NULL, tmp_result ); 00087 if( MB_SUCCESS != rval ) return rval; 00088 rval = jacobianFcn( x.array(), verts, nverts, ndim, work, J[0] ); 00089 if( MB_SUCCESS != rval ) return rval; 00090 double tmp_det = w1 * w2 * J.determinant(); 00091 for( int i = 0; i < num_tuples; i++ ) 00092 result[i] += tmp_result[i] * tmp_det; 00093 } 00094 } 00095 return MB_SUCCESS; 00096 } // LinearHex::integrate_vector() 00097 00098 ErrorCode LinearQuad::reverseEvalFcn( EvalFcn eval, 00099 JacobianFcn jacob, 00100 InsideFcn ins, 00101 const double* posn, 00102 const double* verts, 00103 const int nverts, 00104 const int ndim, 00105 const double iter_tol, 00106 const double inside_tol, 00107 double* work, 00108 double* params, 00109 int* is_inside ) 00110 { 00111 return EvalSet::evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, 00112 is_inside ); 00113 } 00114 00115 int LinearQuad::insideFcn( const double* params, const int ndim, const double tol ) 00116 { 00117 return EvalSet::inside_function( params, ndim, tol ); 00118 } 00119 00120 ErrorCode LinearQuad::normalFcn( const int ientDim, 00121 const int facet, 00122 const int nverts, 00123 const double* verts, 00124 double normal[3] ) 00125 { 00126 // assert(facet <4 && ientDim == 1 && nverts==4); 00127 if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed quad :: expected value = 4" ); 00128 if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " ); 00129 if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-3" ); 00130 00131 // Get the local vertex ids of local edge 00132 int id0 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][0]; 00133 int id1 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][1]; 00134 00135 // Find a vector along the edge 00136 double edge[3]; 00137 for( int i = 0; i < 3; i++ ) 00138 { 00139 edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; 00140 } 00141 // Find the normal of the face 00142 double x0[3], x1[3], fnrm[3]; 00143 for( int i = 0; i < 3; i++ ) 00144 { 00145 x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i]; 00146 x1[i] = verts[3 * 3 + i] - verts[3 * 0 + i]; 00147 } 00148 fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2]; 00149 fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2]; 00150 fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1]; 00151 00152 // Find the normal of the edge as the cross product of edge and face normal 00153 00154 double a = edge[1] * fnrm[2] - fnrm[1] * edge[2]; 00155 double b = edge[2] * fnrm[0] - fnrm[2] * edge[0]; 00156 double c = edge[0] * fnrm[1] - fnrm[0] * edge[1]; 00157 double nrm = sqrt( a * a + b * b + c * c ); 00158 00159 if( nrm > std::numeric_limits< double >::epsilon() ) 00160 { 00161 normal[0] = a / nrm; 00162 normal[1] = b / nrm; 00163 normal[2] = c / nrm; 00164 } 00165 return MB_SUCCESS; 00166 } 00167 00168 } // namespace moab